Skip to main content
Log in

Alkylation of 5-Substituted Tetrazoles with Various Alcohols in 1,2-Dichloroethane in the Presence of BF3·Et2O

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The alkylation of 1H-tetrazole, 5-methyl-1H-tetrazole, and 5-phenyl-1H-tetrazole with primary, secondary, and tertiary alcohols, including benzylic and allylic ones, have been studied in 1,2-dichloroethane in the presence of boron trifluoride–diethyl ether complex. Neither primary nor secondary saturated alcohols alkylated tetrazoles in the given system. Tertiary alcohols such tert-butyl alcohol and adamantan-1-ol reacted with unsubstituted and 5-substituted tetrazoles to give 70–85% of the corresponding 2-alkyl-5-R-tetrazoles with high regioselectivity. The alkylation of 1H-tetrazole with benzyl alcohol afforded 55% of 2-benzyl-2H-tetrazole as the only product. The alkylation of 1H-tetrazole with various allylic alcohols led to the formation of mixtures of 2-alkyl-2H-tetrazoles with isomeric alkyl substituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Stierstorfer, J., Wurzenberger, M., Klapotke, T., and Gruhne, M.S., Chem. – Asian J., 2019, vol. 14, p. 2018. https://doi.org/10.1002/asia.201900269

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Q., Chena, D., Jing, D., Fan, G., He, L., Li, H., Wang, H., and Nie, F., Green Chem., 2019, vol. 21, p. 1947. https://doi.org/10.1039/C8GC03973A

    Article  CAS  Google Scholar 

  3. Yu, Q., Imler, G.H., Parrish, D.A., and Shreeve, J.M., Org. Lett., 2019, vol. 21, p. 4684. https://doi.org/10.1021/acs.orglett.9b01565

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Q., Shao, Y., and Lu, M., Chem. Commun., 2019, vol. 55, p. 6062. https://doi.org/10.1039/C9CC01777A

    Article  CAS  Google Scholar 

  5. Cheng, T., Des. Monomers Polym., 2019, vol. 22, p. 54. https://doi.org/10.1080/15685551.2019.1575652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lempert, D.B., Kazakov, A.I., Soglasnova, S.I., Dalinger, I.L., and Sheremetev, A.B., Russ. Chem. Bull., Int. Ed., 2018, vol. 67, p. 1580. https://doi.org/10.1007/s11172-018-2261-x

    Article  CAS  Google Scholar 

  7. Trifonov, R.E., Saraev, V.V., Zarubaev, V.V., Anfimov, P.M., Kiselev, O.I., Ostrovskii, V.A., Bokach, N.A., and Kukushkin, V.Yu., RU Patent no. 2526263, 2014; Byull. Izobret., 2014, no. 23.

  8. Monk, B.C., Keniya, M.V., Sabherwal, M., Wilson, R.K., Graham, D.O., Hassan, H.F., Chen, D., and Tyndall, J.D.A., Antimicrob. Agents Chemother., 2018, vol. 63, no. 1, article ID 02114-18. https://doi.org/10.1128/AAC.02114-18

  9. Vitaku, E., Smith, D.T., and Njardarson, J.T., J. Med. Chem., 2014, vol. 57, p. 10257. https://doi.org/10.1021/jm501100b

    Article  CAS  PubMed  Google Scholar 

  10. Renslo, A.R., Luehr, G.W., and Gordeev, M.F., Bioorg. Med. Chem., 2006, vol. 14, p. 4227. https://doi.org/10.1016/j.bmc.2006.01.068

    Article  CAS  PubMed  Google Scholar 

  11. Eriksson, L.G., Sirsjo, A.O., and Strid, A.O., US Patent no. 2019/0040020A1, 2019.

  12. Zhang, J., Wang, S., Ba, Y., and Xu, Z., Eur. J. Med. Chem., 2019, vol. 178, p. 341. https://doi.org/10.1016/j.ejmech.2019.05.071

    Article  CAS  PubMed  Google Scholar 

  13. Kitaeva, V.G., Ishmetova, R.I., Latosh, N.I., Malkina, R.M., and Anoghina, G.M., Pharm. Chem. J., 1986, vol. 20, p. 336. https://doi.org/10.1007/BF00758615

    Article  Google Scholar 

  14. Wei, C., Bian, M., and Gong, G., Molecules, 2015, vol. 20, p. 5528. https://doi.org/10.3390/molecules20045528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ostrovskii, V.A., Popova, E.A., and Trifonov, R.E., Adv. Heterocycl. Chem., 2017, vol. 123, p. 1. https://doi.org/10.1016/bs.aihch.2016.12.003

    Article  CAS  Google Scholar 

  16. Bakangura, E., He, Y., Ge, X., Zhu, Y., Wu, L., Ran, J., Cheng, C., Emmanuel, K., Yang, Z., and Xu, T., Front. Chem. Sci. Eng., 2018, vol. 12, p. 306. https://doi.org/10.1007/s11705-017-1690-7

    Article  CAS  Google Scholar 

  17. Zhang, M., Xu, J., Zhang, N., Lu, J., Xin, X., Zheng, F., and Guo, G., New J. Chem., 2018, vol. 42, p. 13927. https://doi.org/10.1039/C8NJ02659A

    Article  CAS  Google Scholar 

  18. Hooker, J.P., Delafresnaye, L., Barner, L., and Barner-Kowollik, C., Mater. Horiz., 2019, vol. 6, p. 356. https://doi.org/10.1039/c8mh01078a

    Article  CAS  Google Scholar 

  19. Kritchenkov, A.S., Egorov, A.R., Krytchankou, I.S., Dubashynskaya, N.V., Volkova, O.V., Shakola, T.V., Kurliuk, A.V., and Skorik, Y.A., Int. J. Biol. Macromol., 2019, vol. 132, p. 340. https://doi.org/10.1016/j.ijbiomac.2019.03.153

    Article  CAS  PubMed  Google Scholar 

  20. Stepinski, D.C., Hess, J.N., and Herlinger, A.W., Synth. Commun., 2003, vol. 33, p. 3483. https://doi.org/10.1081/SCC-120024727

    Article  CAS  Google Scholar 

  21. Ogihara, W., Yoshizawa, M., and Ohno, H., Chem. Lett., 2004, vol. 33, p. 1022. https://doi.org/10.1246/cl.2004.1022

    Article  CAS  Google Scholar 

  22. Dhayabaran, V.V., Lydia, I.S., Merlin, J.P., and Srirenganayaki, P., Ionics, 2004, vol. 10, p. 123. https://doi.org/10.1007/BF02410319

    Article  CAS  Google Scholar 

  23. Koldobskii, G.I. and Ostrovskii, V.A., Rus. Chem. Rev., 1994, vol. 63, p. 797. https://doi.org/10.1070/RC1994v063n10ABEH000119

    Article  Google Scholar 

  24. Egorov, S.A., Ishchenko, M.A., Kirilov, N.A., and Iskhakov, R.S., Russ. J. Org. Chem., 2019, vol. 55, p. 525. https://doi.org/10.1134/S1070428019040183

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the facilities of the Engineering Center of the St. Petersburg State Institute of Technology.

Funding

This study was performed under financial support by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 0785.00.X06019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Egorov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, S.A., Ishchenko, M.A., Prokopovich, Y.V. et al. Alkylation of 5-Substituted Tetrazoles with Various Alcohols in 1,2-Dichloroethane in the Presence of BF3·Et2O. Russ J Org Chem 56, 1196–1203 (2020). https://doi.org/10.1134/S107042802007012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802007012X

Keywords:

Navigation