Skip to main content
Log in

Physicochemical formation conditions of silver sulfoselenides at the Rogovik deposit, Northeastern Russia

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The chemical compositions of acanthite, naumannite, and associated ore minerals have been studied from the samples of polychronous Au–Ag ores at the Rogovik deposit. The following admixtures have been detected: S in naumannite (0–2.9 wt %), Se in acanthite (0–7.45 wt %), argyrodite (~4.8 wt %), and galena (~3.1 wt %), and Fe in sphalerite (~1.2 wt %). The physicochemical parameters of ore formation have been reconstructed on the basis of mineralogical and geochemical data and thermodynamic calculations. Eh–pH (25°C, 1 bar), logfO2–pH, logfS2T, logfSe2T, and logfS2–logfSe2 (100–300°C, 1–300 bars) diagrams for the Ag–S–Se–H2O system with the stability fields of Ag sulfoselenides Ag2S1–x Se x of various composition (step x = 0.25, where 0 ≤ x ≤ 1) have been calculated for the first time. It has been established that Ag sulfoselenides of the naumannite series from polychronous ores of the Rogovik deposit precipitated below 70–133°C under reductive conditions (logfO2 =–65…–50) from near-neutral solutions containing elevated Se and relatively lowered S. It has been established that Ag sulfoselenides of acanthite series were formed later then naumannite but in the same range of logfO2 values at temperatures below 110–177°C from solutions with high S concentration and relatively lowered concentration of Se. The complex composition of the studied Au–Ag ores, whose characteristic feature is extremely variable mineralogy, is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akinfiev, N.N. and Tagirov, B.R., Effect of selenium on silver transport and precipitation by hydrothermal solutions: thermodynamic description of the Ag–Se–S–Cl–O–H system, Geol. Ore Deposits, 2006, vol. 48, no. 5, pp. 402–414.

    Article  Google Scholar 

  • Alekperova, Sh.M., Akhmedov, I.A., Gadzhieva, G.S., and Dzhalilova, Kh.D., Giant magnetoresistance and kinetic phenomenon in n-Ag4SSe in the vicinity of phase transition, Phys. Solid State, 2007, vol. 49, no. 3, pp. 512–515.

    Article  Google Scholar 

  • Barton, P.B. and Skinner, B.J., Sulfide mineral stabilities, in Geochemistry of Hydrothermal Ore Deposits, Burnes, H.L., Ed., New York: Willey, 1979, pp. 278–403.

  • Bindi, L. and Pingitore, N.E., On the symmetry and crystal structure of aguilarite, Ag4SeS, Mineral. Mag., 2013, vol. 77, pp. 21–31.

    Article  Google Scholar 

  • Bontschewa-Mladenowa, Z. and Zaneva, K., Untersuchung des systems Ag2Se–Ag2S, Z. Anorg. Allg. Chem., 1977, vol. 437, pp. 253–262.

    Article  Google Scholar 

  • Bortnikov, N.S. and Genkin, A.D., Coexisting sulfides as criteria of ore formation conditions, in Mineral’nye assotsiatsii, struktury i tekstury rud (Mineral Assemblages, Ore Structures and Textures), Moscow: Nauka, 1984, pp. 29–51.

    Google Scholar 

  • Cocker, H.A., Mauk, J.L., and Rabone, S.D.C., The origin of Ag–Au-S–Se minerals in adularia-sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki goldfield, New Zealand, Miner. Deposita, 2013, vol. 48, pp. 249–266.

    Article  Google Scholar 

  • Davidson, D.F., Selenium in some epithermal deposits of antimony, mercury and silver and gold, Geol. Surv. Bull, 1960, vol. 1112-A, pp. 1–16.

    Google Scholar 

  • Dobrovol’skaya, M.G., Bortnikov, N.S., and Naumov, V.B., Iron content in sphalerite as an indicator of sulfur activity durin formation of ore deposits, Geol. Rudn. Mestorozhd., 1991, vol. 33, no. 5, pp. 80–93.

    Google Scholar 

  • El-Raghy, S.M. and El-Demerdash, M.F., Computation of Eh–pH diagrams for M–S–H2O systems: a new approach, J. Electrochem. Soc., 1989, vol. 136, no. 12, pp. 3647–3654.

    Article  Google Scholar 

  • Floor, G.H. and Roman-Ross, G., Selenium in volcanic environments: a review, Appl. Geochem., 2012, vol. 27, pp. 517–531.

  • Garrels, R.M. and Christ Ch.L., Solutions, Minerals, and Equilibria, New York: Harper & Row, 1965.

    Google Scholar 

  • Glazov, V.M., Bupkhanov, A.S., and Kureshov, V.A., Phase equilibria in quasibinary systems formed by silver chalcogenides, Zh. Fiz. Khim., 1984, vol. 58, no. 12, pp. 2958–2960.

    Google Scholar 

  • Godovikov, A.A., Mineralogiya (Mineralogy), Moscow: Nedra, 1983.

    Google Scholar 

  • Helgeson, H.C., Delany, J.M., Nesbitt, H.W., and Bird, D.K., Summary and critique of the thermodynamic properties of rock-forming minerals, Am. J. Sci., 1978, vol. 278-A, p. 229.

    Google Scholar 

  • Knacke, O., Kubaschewski, O., and Hesselmann, K., Thermochemical Properties of Inorganic Substances, Heidelberg: Springer, 1991.

    Google Scholar 

  • Kravtsova, R.G., Geokhimiya i usloviya formirovaniya zoloto-serebryanykh rudoobrazuyushchikh sistem Severnogo Priokhot’ya (Gechemistry and Formation Conditions of Gold–Silver Ore Forming Systems in the Northern Okhotsk Region), Novosibirsk: Geo, 2010.

    Google Scholar 

  • Kravtsova, R.G., Makshakov, A.S., Tarasova, Yu.I., and Kulikova, Z.I., Mineralogical and geochemical singularities of host rocks and ores of the Rogovik gold–silver deposit, Northestern Russia, Izv. Siberian Otd Sec. Nuak o Zemle RAEN–Geol., Poiski, Razv. Rudn. Mestorozhd., 2012, vol. 2, no. 41, pp. 11–22.

    Google Scholar 

  • Krismer, M., Vavtar, F., Tropper, P., Sartory, B., and Kaindl, R., Mineralogy, mineral chemistry and petrology of the Ag-bearing Cu–Fe–Pb–Zn sulfide mineralizations of thePfunderer Berg (South Tyrol, Italy), Austrian J. Earth Sci., 2011, vol. 104, no. 1, pp. 36–48.

    Google Scholar 

  • Krivovichev, V.G., Charykova, M.V., Yakovenko, O.S., and Dempaier, V., Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. IV. Eh–pH diagrams of the Me–Se–H2O systems (Me = Co, Ni, Fe, Fe, Cu, Zn, Pb) at 25°C, Geol. Ore Deposits, 2011, vol. 53, no. 7 (Zap. Russian Mineral. Soc.), pp. 514–527.

    Article  Google Scholar 

  • Kuznetsov, V.M., Palymskaya, Z.A., Puzyrev, V.P., Pchelintseva, R.Z., Stepanov, V.A., and Shchitova, V.I., Gold–silver mineralization in cryptovolcanic structure, Kolyma, 1992, no. 3, pp. 5–8.

    Google Scholar 

  • Mcneil, M.B. and Little, B.J., The use of mineralogical data in interpretation of long-term microbiological corrosion processes: sulfiding reactions, J. Am. Inst. Conserv., 1999, vol. 38, no. 2, pp. 186–199.

    Article  Google Scholar 

  • Naumov, G.B., Ryzhenko, B.N., and Khodakovskii, I.L., Spravochnik termodinamicheskikh veshchestv (Reference Book of Thermodynamic Values), Moscow: Atomizdat, 1971.

    Google Scholar 

  • Pal’yanova, G.A., Chudnenko, K.V., and Zhuravkova, T.V., Thermodynamic properties of solid solutions in the Ag2S–Ag2Se system, Thermochim. Acta, 2014, vol. 575, pp. 90–96.

    Article  Google Scholar 

  • Pavlova, L.A. and Paradina, L.F., Rentgenospektral’nyi mikroanaliz i ego primenenie v mineralogii (Electron Microprobe Analysis and Its Application to Mineralogy), Yakutsk: Yakutsk Sci. Center, Siberian Branch, Russian Academy of Sciences, 1990.

  • Pavlova, L.A. and Kravtsova, R.G., Determination of Ag species in dispersion trains by electron micropropbe (Dukat Au–Ag deposit), Metody Ob’ekty Khim. Anal., 2006, vol. 1, no. 2, pp. 132–141.

    Google Scholar 

  • Petruk, W., Owens, D.R., Stewart, J.M., and Murray, E.J., Observations on acanthite, aguilarite and naumannite, Can. Mineral., 1974, vol. 12, pp. 365–369.

    Google Scholar 

  • Pingitore, N.E., Ponce, B.F., Eastman, M.P., Moreno, F., and Podpora, C., Solid solutions in the system Ag2S–Ag2Se, J. Mater. Res., 1992, vol. 7, pp. 2219–2224.

    Article  Google Scholar 

  • Pingitore, N.E., Ponce, B.F., Estrada, L., Eastman, M.P., Yuan, H.L., Porter, L.C., and Estrada, G., Calorimetric analysis of the system Ag2S–Ag2Se between 25 and 250°C, J. Mater. Res., 1993, vol. 8, pp. 3126–3130.

    Article  Google Scholar 

  • Ponce, B.F., Experimental and empirical investigation of the silver sulfide-silver selenide system and discrimination of topaz rhyolites by major-element composition, Ph.D. Thesis, Univ. Texas El Paso, 1995.

    Google Scholar 

  • Robie, R.A. and Hemingway, B.S., Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures, USGeol. Surv. Bull., 1995, vol. 2131.

  • Roy, R., Majumdar, A.J., and Hulbe, C.W., The Ag2S and Ag2Se transitions as geologic thermometers, Econ. Geol., 1959, vol. 54, pp. 1278–1280.

    Article  Google Scholar 

  • Savva, N.E., Pal’ yanova, G.A., and Byankin, M.A., The problem of genesis of gold and silver sulfides and selenides in the Kupol deposit (Chukotka, Russia), Russ. Geol. Geophys., 2012, vol. 53, no. 5, pp. 457–466.

    Article  Google Scholar 

  • Takahashi, R., Matsueda, H., and Okrugin, V.M., Hydrothermal gold mineralization at the Rodnikovoe deposit in South Kamchatka, Russia, Resour. Geol., 2002, vol. 52, no. 4, pp. 359–369.

    Article  Google Scholar 

  • Vassilev, V.S. and Ivanova, Z.G., Reversible a–ß phase transition in the narrow-gap semiconducting Ag4SSe compound, Bull. Chem. Technol. Macedonia, 2003, vol. 22, no. 1, pp. 21–24.

    Google Scholar 

  • Vikre, P.G., Sinter-vein correlations at Buckskin Mountain, National District, Humboldt County, Nevada, Econ. Geol., 2007, vol. 102, pp. 193–224.

    Article  Google Scholar 

  • Warmada, I.W., Lehmann, B., and Simandjuntak, M., Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold-silver deposit, West Java, Indonesia, Can. Mineral., 2003, vol. 41, no. 1, pp. 185–200.

    Article  Google Scholar 

  • Warren, G.W., Drouven, B., and Price, D.W., Relationships between the Pourbaix diagram for Ag–S–H2O and electrochemical oxidation and reduction of Ag2S, Metall. Trans. B, 1984, vol. 15B, pp. 235–242.

    Article  Google Scholar 

  • Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  • Xiong, Y., Predicted equilibrium constants for solid and aqueous selenium species to 300°C: applications to selenium-rich mine mineral deposits, Ore Geol. Rev., 2003, vol. 23, nos. 3–4, pp. 259–276.

    Article  Google Scholar 

  • Zhang, H., Feng, X., and Larssen, T., Selenium speciation, distribution, and transport in a river catchment affected by mercury mining and smelting in Wanshan, China, Appl. Geochem., 2014, vol. 40, pp. 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Palyanova.

Additional information

Original Russian Text © T.V. Zhuravkova, G.A. Palyanova, R.G. Kravtsova, 2015, published in Geologiya Rudnykh Mestorozhdenii, 2015, Vol. 57, No. 4, pp. 351–369.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravkova, T.V., Palyanova, G.A. & Kravtsova, R.G. Physicochemical formation conditions of silver sulfoselenides at the Rogovik deposit, Northeastern Russia. Geol. Ore Deposits 57, 313–330 (2015). https://doi.org/10.1134/S1075701515040066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701515040066

Keywords

Navigation