Skip to main content
Log in

Synthesis and characterization of CuInSe2 core–shell quantum dots

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A synthesis of 1-dodecanetiol stabilized colloidal quantum dots of CuInSe2 exhibiting photoluminescence in the range of 700–900 nm has been described. The effect of the shell on the energy levels of electrons in CuInSe2–ZnS and CuInSe2–ZnSe core–shell quantum dots has been investigated by quantum mechanical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanochastitsy, nanosistemy i ikh primenenie. Ch. 1. Kolloidnye kvantovye tochki (Nanoparticles, Nanosystems, and Their Use. Part 1. Colloidal Quantum Dots), Moshnikova, V.A. and Aleksandrova, O.A., Eds., Ufa: Aeterna, 2015.

  2. Aleksandrova, O.A., Luchinin, V.V., Maksimov, A.I., Moshnikov, V.A., and Musikhin, S.F., Semiconductor colloidal nanoparticles in biology and medicine, Biotekhnosfera, 2012, nos. 5–6, pp. 48–50.

    Google Scholar 

  3. Musikhin, S.F., Aleksandrova, O.A., Luchinin, V.V., Maksimov, A.I., Matyushkin, L.B., and Moshnikov, V.A., Sensors based on metal and semiconductor colloidal nanoparticles for biomedical and environmental applications, Biotekhnosfera, 2013, no. 2, pp. 2–17.

    Google Scholar 

  4. Melekhin, V.G., Kolobkova, E.V., Lipovskii, A.A., Petrikov, V.D., Malyarevich, A.M, and Savitskii, V.G., Fluorophosphate glasses doped with PbSe quantum dots and their nonlinear optical characteristics, Glass Phys. Chem., 2008, vol. 34, no. 4, pp. 351–355.

    Article  Google Scholar 

  5. Kolobkova, E.V., Polyakova, A.V., Abdrshin, A.N., Nikonorov, N.V., and Aseev, V.A., Nanostructured glass ceramic based on fluorophosphate glass with PbSe quantum dots, Glass Phys. Chem., 2015, vol. 41, no. 1, pp. 127–131.

    Article  Google Scholar 

  6. Alekseeva, I.P., Antonen, O.V., Golubkov, V.V., Onushchenko, A.A., and Raaben, E.L., Kinetic regularities of the precipitation of PbS nanocrystals in sodium zinc silicate glasses, Glass Phys. Chem., 2007, vol. 33, no. 1, pp. 1–7.

    Article  Google Scholar 

  7. Omata, T., Nose, K., and Otsuka-Yao-Matsuo, S., Size dependent optical band gap of ternary I–III–VI2 semiconductor nanocrystals, J. Appl. Phys., 2009, vol. 105, no. 7, P. 3106. doi 10.1063/1.3103768

    Article  Google Scholar 

  8. Goryunova, N.A., Slozhnye almazopodobnye poluprovodniki (Sophisticated Diamond-Like Semiconductors), Moscow: Sov. Radio, 1968.

    Google Scholar 

  9. Cassette, E., et al., Synthesis and characterization of near-infrared Cu-In-Se/ZnS core/shell quantum dots for in vivo imaging, Chem. Mater., 2010, vol. 22, no. 22, pp. 6117–6124.

    Article  Google Scholar 

  10. Igoshina, S.E. and Karmanov, A.A., Features of the electronic spectrum in a type-I core-shell quantum dot, Quantum Electron., 2013, vol. 43, no. 1, pp. 76–78.

    Article  Google Scholar 

  11. Karmanov, A.A., Pronin, I.A., Yakushova, N.D., Igoshina, S.E., and Averin, I.A., Analysis of electron energy spectrum in type II core/shell quantum dots, J. Phys.: Conf. Ser., 2015, vol. 586, p. 012006. doi 10.1088/1742-6596/586/1/012006

    Google Scholar 

  12. Chamberlain, M.P., Trallero-Giner, C., and Cardona, M., Theory of one-phonon raman scattering in semiconductor microcrystallites, Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 51, no. 3, pp. 1680–1693.

    Article  Google Scholar 

  13. Zhong, H., et al., Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals, Chem. Mater., 2008, vol. 20, no. 20, pp. 6434–6443.

    Article  Google Scholar 

  14. Pu, C., et al., Highly reactive, flexible yet green se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS), Nano Res., 2013, vol. 6, no. 9, pp. 652–670.

    Google Scholar 

  15. Zhong, H., et al., Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence, J. Phys. Chem. C, 2011, vol. 115, no. 25, pp. 12396–12402.

    Article  Google Scholar 

  16. Ponomareva, A.A., Moshnikov, V.A., and Suchaneck, G., Evaluation of the fractal dimension of sol–gel deposited oxide films by means of the power spectral density, Glass Phys. Chem., 2014, vol. 40, no. 2, pp. 262–267.

    Article  Google Scholar 

  17. Moshnikov, V.A., Tairov, Yu.M., Khamova, T.V., and Shilova, O.A., Zol’-gel’ tekhnologiya mikro-i nanokompozitov (Sol–Gel Technology of Micro-and Nanocomposites), Shilova, O. A, Ed., St. Petersburg: Lan’, 2013.

  18. Sychov, M., Nakanishi, Y., Mimura, H., Vasina, E., Eruzin, A., Mjakin, S., Khamova, T., and Shilova, O., Core-shell approach to control acid-base properties of surface of dielectric and permittivity of its composite, Chem. Lett., 2015, vol. 44, no. 2, pp. 197–199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Karmanov.

Additional information

Original Russian Text © D.S. Mazing, A.A. Karmanov, L.B. Matyushkin, O.A. Aleksandrova, I.A. Pronin, V.A. Moshnikov, 2016, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazing, D.S., Karmanov, A.A., Matyushkin, L.B. et al. Synthesis and characterization of CuInSe2 core–shell quantum dots. Glass Phys Chem 42, 497–504 (2016). https://doi.org/10.1134/S1087659616050114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659616050114

Keywords

Navigation