Skip to main content
Log in

Dielectric properties of silver-doped nanoporous silicate glasses in the temperature range between –50 and +250°C

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The results of measuring dielectric parameters of nanoporous silicate glasses with a nanopore size of 3.5 and 25.7 nm, either doped with silver or not, in the temperature range between–50 and +250°C and the frequency range of 0.1–106 Hz are reported. It is demonstrated that when silver nanoparticles are formed in glass pores, some silver remains in the form of subnanosized molecular clusters Ag n and molecular complexes Ag n –(OH) m . The key dielectric properties of the relaxation centers are determined for different temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters, Berlin: Springer, 1995.

    Book  Google Scholar 

  2. Klimov, V.V., Nanoplazmonika (Nanoplasmonics), Moscow: Fizmatlit, 2009; Singapore: Pan Stanford, 2011.

    Google Scholar 

  3. Maier, S.A., Plasmonics: Fundamentals and Applications, Berlin: Springer, 2007.

    Google Scholar 

  4. Thomas, S., Nair, S.K., Jamal, E.M.A., Al-Harthi, S.H., Varma, M.R., and Anantharaman, M.R., Size-dependent surface plasmon resonance in silver silica nanocomposites, Nanotecnology, 2008, vol. 19, no. 7, pp. 075710-1–5.

    Article  Google Scholar 

  5. Tagada, C.K., Dugasani, S.R., Aiyer, R., Park, S., Kulkarni, A., and Sabharwal, S., Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor, Sens. Actuators B: Chem., 2013, vol. 183, pp. 144–149.

    Article  Google Scholar 

  6. Choi, S., Dickson, R.M., and Yu, J., Developing luminescent silver nanodots for biological applications, Chem. Soc. Rev., 2012, vol. 41, pp. 1867–1891.

    Article  Google Scholar 

  7. Nashchekin, A.V., Nevedomskiy, V.N., Obraztsov, P.A., Stepanenko, O.V., Sidorov, A.I., Usov, O.A., Turoverov, K.K., and Konnikov, S.G., Waveguide-type localized plasmon resonance biosensor for noninvasive glucose concentration detection, Proc. SPIE, 2012, vol. 8427, pp. 84239-1–6.

    Google Scholar 

  8. Garcia, M.A., Surface plasmons in metal nanoparticles: fundamentals and applications, J. Phys. D: Appl. Phys., 2011, vol. 44, pp. 283001-1–6.

    Article  Google Scholar 

  9. Lee, K.S. and El-Sayed, M.A., Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition, J. Phys. Chem. B, 2006, vol. 110, pp. 19220–19225.

    Article  Google Scholar 

  10. Mazurin, O.V., Roskova, G.P., Aver’yanov, V.I., and Antropova, T.V., Dvukhfaznye stekla (Two Phase Glasses), Leningrad: Nauka, 1991.

    Google Scholar 

  11. Andreeva, O.V., Obyknovennaya, I.E., Gavrilyuk, E.R., Paramonov, A.A., and Kushnarenko, A.P., Silverhalide photographic materials based on nanoporous glasses, J. Opt. Technol., 2005, vol. 72, no. 12, pp. 916–922.

    Article  Google Scholar 

  12. Agamalian, M., Drake, J.M., Sinha, S.K., and Axe, J.D., Neutron diffraction study of the pore surface layer of Vycor glass, Phys. Rev. E, 1997, vol. 55, pp. 3021–3027.

    Article  Google Scholar 

  13. Gutina, A., Antropova, T., Rysiakiewicz-Pasek, E., Virnik, K., and Feldman, Y., Dielectric relaxation in porous glasses, Microporous Mesoporous Mater., 2003, vol. 58, pp. 237–254.

    Article  Google Scholar 

  14. Cole, R.H. and Cole, K.S., Dispersion and absorption in dielectrics I: Alternating current characteristics, J. Chem. Phys., 1941, vol. 9, pp. 341–351.

    Article  Google Scholar 

  15. Cole, K.S. and Cole, R.H., Dispersion and absorption in dielectrics II: Alternating current characteristics, J. Chem. Phys., 1942, vol. 10, pp. 98–107.

    Article  Google Scholar 

  16. Montagne, I., Palavit, G., and Mairesse, G., 31P MAS NMR and FTIR analysis of (50–x/2)Na2O–(x)Bi2O3–(50–x/2)P2O5 glasses, Phys. Chem. Glasses, 1996, vol. 37, no. 5, pp. 206–211.

    Google Scholar 

  17. Gladkov, S.O., Fizika kompozitov: termodinamicheskie i dissipativnye svoistva (Physics of Composites: Thermodynamical and Dissipative Properties), Moscow: Nauka, 1999.

    Google Scholar 

  18. Fedrigo, S., Harbich, W., and Buttet, J., Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices, J. Chem. Phys., 1993, vol. 99, pp. 5712–5717.

    Article  Google Scholar 

  19. Ozin, G.A. and Hugues, F., Silver atoms and small silver clusters stabilized in zeolite Y: Optical spectroscopy, J. Phys. Chem., 1983, vol. 87, pp. 94–97.

    Article  Google Scholar 

  20. Dubrovin, V.D., Ignatiev, A.I., Nikonorov, N.V., Sidorov, A.I., Shakhverdov, T.A., and Agafonova, D.S., Luminescence of silver molecular clusters in photothermo-refractive glasses, Opt. Mater., 2014, vol. 36, no. 4, pp. 753–759.

    Article  Google Scholar 

  21. Dubrovin, V.D., Ignat’ev, A.I., Nikonorov, N.V., and Sidorov, A.I., Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses, Tech. Phys., 2014, vol. 59, no. 5, pp. 733–735.

    Article  Google Scholar 

  22. Zhao, S., Liu, Z.-P., Li, Z.-H., Wang, W.-N., and Fan, K.-N., Density functional study of small neutral and charged silver cluster hydrides, J. Phys. Chem. A, 2006, vol. 110, pp. 11537–11542.

    Article  Google Scholar 

  23. Zhou, J., Li, Z.-H., Wang, W.-N., and Fan, K.-N., Density functional study of the interaction of carbon monoxide with small neutral and charged silver clusters, J. Phys. Chem. A, 2006, vol. 110, pp. 7167–7172.

    Article  Google Scholar 

  24. Zhao, S., Li, Z.-H., Wang, W.-N., and Fan, K.-N., Density functional study of the interaction of chlorine atom with small neutral and charged silver clusters, J. Chem. Phys., 2005, vol. 122, pp. 144701–144708.

    Article  Google Scholar 

  25. Zhou, J., Li, Z.-H., Wang, W.-N., and Fan, K.-N., Density functional study of the interaction of molecular oxygen with small neutral and charged silver clusters, Chem. Phys. Lett., 2006, vol. 421, pp. 448–452.

    Article  Google Scholar 

  26. Sun, L., Zhang, A., Su, S., Wang, H., Liu, J., and Xiang, J., A DFT study of the interaction of elemental mercury with small neutral and charged silver clusters, Chem. Phys. Lett., 2011, vol. 517, pp. 227–233.

    Article  Google Scholar 

  27. Brechignac, C., Cahuzac, P., and Tigneres, I., Reactive nucleation of silver clusters with oxygen and water, Chem. Phys. Lett., 1999, vol. 303, pp. 304–310.

    Article  Google Scholar 

  28. Bertolusa, M., Brenner, V., and Milli, P., Influence of covalence and anion symmetry on the structure of small metal hydroxide clusters: Sodium versus silver hydroxide, Eur. Phys. J. D, 2000, vol. 11, pp. 387–395.

    Article  Google Scholar 

  29. Defects in SiO2 and related dielectrics: science and technology, in NATO Science Series II: Mathematical and Physical Chemistry, Pacchioni, G., Skuja, L., and Griscom, D., Eds., Dordrecht: Springer Science + Business Media, 2000, vol. 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Sidorov.

Additional information

Original Russian Text © K.S. Zyryanova, R.A. Kastro, A.S. Pshenova, A.I. Sidorov, T.V. Antropova, 2017, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyryanova, K.S., Kastro, R.A., Pshenova, A.S. et al. Dielectric properties of silver-doped nanoporous silicate glasses in the temperature range between –50 and +250°C. Glass Phys Chem 43, 207–214 (2017). https://doi.org/10.1134/S1087659617030142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659617030142

Keywords

Navigation