Skip to main content
Log in

Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth–Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth–Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ebert and M. K. Volkov, Z. Phys. C 16, 205–210 (1983).

    Article  ADS  Google Scholar 

  2. M. K. Volkov and D. Ebert, Sov. J. Nucl. Phys. 36, 736 (1982).

    Google Scholar 

  3. M. K. Volkov, Ann. Phys. 157, 282–303 (1984).

    Article  ADS  Google Scholar 

  4. D. Ebert and H. Reinhardt, Nucl. Phys. B 271, 188–226 (1986).

    Article  ADS  Google Scholar 

  5. D. Ebert, H. Reinhardt, and M. K. Volkov, Prog. Part. Nucl. Phys. 33, 1–120 (1994).

    Article  ADS  Google Scholar 

  6. S. P. Klevansky, Rev. Mod. Phys. 64, 649–709 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221–367 (1994).

    Article  ADS  Google Scholar 

  8. M. Buballa, Phys. Rep. 407, 205–376 (2005).

    Article  ADS  Google Scholar 

  9. M. Oertel, M. Buballa, and J. Wambach, Phys. At. Nucl 64, 698–726 (2001).

    Article  Google Scholar 

  10. J. Jankowski, D. Blaschke, and M. Spalinski, Phys. Rev. D: Part. Fields 87, 105018 (2013).

    Article  ADS  Google Scholar 

  11. A. Bazavov et al. (HotQCD Collab.), Phys. Rev. D: Part. Fields 85, 054503 (2012).

    Article  ADS  Google Scholar 

  12. C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D: Part. Fields 73, 014019 (2006).

    Article  ADS  Google Scholar 

  13. J. Hufner, S. P. Klevansky, P. Zhuang, and H. Voss, Ann. Phys. 234, 225–244 (1994).

    Article  ADS  Google Scholar 

  14. P. Zhuang, J. Hufner, and S. P. Klevansky, Nucl. Phys. A 576, 525–552 (1994).

    Article  ADS  Google Scholar 

  15. A. Wergieluk, D. Blaschke, Y. L. Kalinovsky, and A. Friesen, Phys. Part. Nucl. Lett. 10, 1084–1098 (2013).

    Article  Google Scholar 

  16. D. Blaschke, M. Buballa, A. Dubinin, G. Röpke, and D. Zablocki, Ann. Phys. 348, 228–258 (2014).

    Article  ADS  Google Scholar 

  17. K. Yamazaki and T. Matsui, Nucl. Phys. A 913, 19–25 (2013).

    Article  ADS  Google Scholar 

  18. K. Yamazaki and T. Matsui, Nucl. Phys. A 922, 237–261 (2014).

    Article  ADS  Google Scholar 

  19. J. M. Torres-Rincon and J. Aichelin, Phys. Rev. C 96, 045205 (2017).

    Article  ADS  Google Scholar 

  20. D. Blaschke, A. Dubinin, A. Radzhabov, and A. Wergieluk, Phys. Rev. D: Part. Fields 96, 094008 (2017).

    Article  Google Scholar 

  21. D. Blaschke and D. Ebert, Nucl. Phys. B 921, 753–774 (2017).

    Article  ADS  Google Scholar 

  22. H. Grigorian, Phys. Part. Nucl. Lett 4, 223–234 (2007); hep-ph/0602238.

    Article  Google Scholar 

  23. M. Kitazawa, T. Kunihiro, and Y. Nemoto, Phys. Rev. D: Part. Fields 90, 116008 (2014).

    Article  ADS  Google Scholar 

  24. S. M. Schmidt, D. Blaschke, and Y. L. Kalinovsky, Phys. Rev. C 50, 435–467 (1994).

    Article  ADS  Google Scholar 

  25. D. Blaschke, Y. L. Kalinovsky, G. Roepke, S. M. Schmidt, and M. K. Volkov, Phys. Rev. C 53, 2394–2400 (1996).

    Article  ADS  Google Scholar 

  26. D. Blaschke, J. Berdermann, J. Cleymans, and K. Redlich, Few Body Syst. 53, 99–109 (2012).

    Article  ADS  Google Scholar 

  27. H. Hansen, W. M. Alberico, A. Beraudo, A. Molinari, M. Nardi, and C. Ratti, Phys. Rev. D: Part. Fields 75, 065004 (2007).

    Article  ADS  Google Scholar 

  28. D. Blaschke, A. Dubinin, and M. Buballa, Phys. Rev. D: Part. Fields 91, 125040 (2015).

    Article  ADS  Google Scholar 

  29. M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195–2199 (1968).

    Article  ADS  Google Scholar 

  30. E. N. Nikolov, W. Broniowski, C. V. Christov, G. Ripka, and K. Goeke, Nucl. Phys. A 608, 411–436 (1996).

    Article  ADS  Google Scholar 

  31. D. Blaschke, A. Dubinin, and L. Turko, Phys. Part. Nucl. 46, 732–736 (2015).

    Article  Google Scholar 

  32. D. Blaschke, A. Dubinin, and L. Turko, Acta Phys. Polon. A Proc. Suppl. 10, 473–480 (2017).

    Article  Google Scholar 

  33. W. Florkowski and B. L. Friman, Acta Phys. Polon. B 25, 49–71 (1994).

    Google Scholar 

  34. W. Florkowski and B. Friman, Nucl. Phys. A 611, 409–428 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Blaschke.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaschke, D., Dubinin, A., Ebert, D. et al. Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature. Phys. Part. Nuclei Lett. 15, 230–235 (2018). https://doi.org/10.1134/S1547477118030056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118030056

Navigation