Skip to main content
Log in

Asymptotic stability and associated problems of dynamics of falling rigid body

  • 150th Anniversary of A.M. Lyapunov
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider two problems from the rigid body dynamics and use new methods of stability and asymptotic behavior analysis for their solution. The first problem deals with motion of a rigid body in an unbounded volume of ideal fluid with zero vorticity. The second problem, having similar asymptotic behavior, is concerned with motion of a sleigh on an inclined plane. The equations of motion for the second problem are non-holonomic and exhibit some new features not typical for Hamiltonian systems. A comprehensive survey of references is given and new problems connected with falling motion of heavy bodies in fluid are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyapunov, A.M., On Constant Helical Motions of a Solid Body in Fluid, Comm. Soc. Math. Kharkow, 1888, vol. 1, nos. 1–2, pp. 7–60.

    Google Scholar 

  2. Lyapunov, A.M., New Case of Integrability of Equations of Motion of a Solid Body in Fluid, Comm. Soc. Math. Kharkow, 1893, vol. 4, nos. 1–2, pp.81–85.

    Google Scholar 

  3. Steklov, V.A., O dvizhenii tverdogo tela v zhidkosti (On the Motion of a Rigid Body in a Fluid), Kharkov, 1893.

  4. Lyapunov, A.M., About Integration of the Differential Equations of Motion for a Rigid Body in Fluid, Unpublished manuscript (145 pages), 1893, RAS Archive, St. Petersburg Section.

    Google Scholar 

  5. Lyapunov, A.M., On the Motion of a Heavy Rigid Body in the Two Cases Indicated by Clebsch, Unpublished manuscript (8 pages), 1888–1893, RAS Archive, St. Petersburg Section.

    Google Scholar 

  6. Lyapunov, A.M., On a Property of Differential Equations of the Problem on a Motion of a Solid Body with a Fixed Point, Comm. Soc. Math. Kharkow, 1894, vol. 4, no. 3, pp. 123–140.

    Google Scholar 

  7. Morales-Ruiz, J.J. and Ramis, J.P. Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, Vol. 179, Birkhäuser, 1999.

  8. Borisov, A.V., Necessary and Sufficient Conditions of Kirchhoff Equation Integrability, Regul. khaot. din., 1996, vol. 1, no. 2, pp. 61–76 (in Russian).

    MATH  Google Scholar 

  9. Holmes, P., Jenkins, J.T., and Leonard, N.E., Dynamics of the Kirchhoff Equations I: Coincident Centers of Gravity and Buoyancy, Physica D, 1998, vol. 118, no. 3–4, pp. 311–342.

    Article  MathSciNet  Google Scholar 

  10. Hanßmann, H. and Holmes, P. On the Global Dynamics of Kirchhoff’s Equations: Rigid Body Models for Underwater Vehicles. Invited paper at Workshop in honor of Floris Takens, Netherlands, June 24–29, 2001. In: Broer, H.W., Krauskopf B., and Vegter, G., Eds., Global Analysis of Dynamical Systems, Bristol: IOP, UK, 2001, pp. 353–371.

    Google Scholar 

  11. Kobb, G. Sur le problème de la rotation d’un corps autour d’un point fixe. Bulletin de la Société Mathématique de France, 1895, t. 23, pp. 210–215.

    MathSciNet  Google Scholar 

  12. Kötter, F., Üeber die Bewegung eines festen Körpers in einer Flüssigkeit I, J. reine angew. Math., 1892, B. 109, S. 51–81.

    Google Scholar 

  13. Kötter, F., Üeber die Bewegung eines festen Körpers in einer Flüssigkeit II, J. reine angew. Math., 1892, B. 109, S. 89–111.

    Google Scholar 

  14. Borisov, A.V., and Mamaev, I.S., Dinamika tverdogo tela (Rigid Body Dynamics), Moscow-Izhevsk: Inst. komp. issled., RCD, 2005.

    MATH  Google Scholar 

  15. Zhukovskii, N.E., Motion of a Rigid Body with Cavities Filled with a Homogeneous Dropping Liquid I, II, III, Zh. Fiz. Khim. Obshch., 1885, vol. 17, sec. 1, nos. 6 7 8, pp. 81Ц113, pp. 145Ц149, pp. 231Ц280.

    Google Scholar 

  16. Nekrasov, P.A., Analytical Investigation of a Case of the Motion of a Heavy Rigid Body About a Fixed Point, Mat. Sbonik Kruzhka Lyub. Mat. Nauk, 1896, vol. 18, no. 2, pp. 161–274.

    Google Scholar 

  17. Kolosov, G.V., About one Case of Motion of a Heavy Rigid Body with a Sharp Edge on a Smooth Plane, Trudy Otd. Fiz. Nauk Mosk. Obshch. Lyub. Estest., 1898, vol. 10, pp. 11–12.

    Google Scholar 

  18. Lyapunov, A.M., The General Problem of the Stability of Motion, Kharkow Math. Soc., 1892. French version: Problème Géneral de la Stabilité de Mouvement, Ann. Fac. Sci. Univ. Toulouse, 1907, t. 9, pp. 203–474. Engl. transl.: Internat. J. Control, 1992, vol. 55, no. 3, pp. 521–790.

    Google Scholar 

  19. Borisov, A.V., Kozlov, V.V., and Mamaev, I.S., On the Fall of a Heavy Rigid Body in an Ideal Fluid, Proc. Steklov Inst. Math. 2006, Dynamical Systems: Modeling, Optimization, and Control, Suppl. vol., no. 1, pp. S24–S47.

  20. Goryachev, N.D., On the Motion of a Heavy Rigid Body in a Fluid, Izv. Imper. ob-va lyubitelei estestvoznaniya pri Mosk. Imperat. Univ., 1893, vol. 78, no. 2, pp. 59–61.

    Google Scholar 

  21. Chaplygin, S.A., On the Motion of Heavy Solid Bodies in Incompressible Fluid, Complete Works, Leningrad: Akad. Nauk SSSR, 1933. vol. 1. pp. 133–150.

    Google Scholar 

  22. Kozlov, V.V., The Stability of Equilibrium Positions in a Non-Stationary Force Field, Prikl. Mat. Mekh., 1991, vol. 55, no. 1, pp. 12–19 [J. Appl. Math. Mech., 1991, vol. 55, no. 1, pp. 8–13].

    MathSciNet  Google Scholar 

  23. Chaplygin, S.A., A New Special Solution of the Problem of Motion of a Solid Body in Fluid, Trudy Otd. Fiz. Nauk Mosk. Obshch. Lyub. Estest., 1903, vol. 11, no. 2, pp. 7–10. Reprinted in: Collected Papers, Moscow-Leningrad: Gostekhizdat, 1948, vol. 1, pp. 337–346.

    Google Scholar 

  24. Kozlov, V.V., On Falling of a Heavy Rigid Body in an Ideal Fluid, Izv. Akad. Nauk. Mekh. tverd. tela, 1989, no. 5. pp. 10–16.

  25. Kozlov, V.V., Polynomial Integrals of Dynamical Systems with One-and-a-half Degrees of Freedom, Mat. Zametki, 1989, vol. 45, no. 4, pp. 46–52 [Math. Notes, 1989, vol. 45, nos. 3–4, pp. 296–300].

    Google Scholar 

  26. Ramodanov, S.M., Asymptotics of Solutions of Chaplygin’s Equations, Vestn. Moskov. Univ., Ser. Mat. Mekh., 1995, no. 3, pp. 93–97.

  27. Steklov, V.A., The Supplements to the Work ‘On the Motion of a Rigid Body in a Fluid”, Kharkov, 1893.

  28. Deryabin, M.V., On Asymptotics of Chaplygin Equation, Regul. Chaotic Dyn., 1998, vol. 3, no. 1, pp. 93–97.

    Article  MATH  MathSciNet  Google Scholar 

  29. Deryabin M.V. and Kozlov V.V., On Effect of “Emerging” of a Heavy Rigid Body in a Fluid, Izv. Akad. Nauk. Mekh. tverd. tela, 2002, no. 1, pp. 68–74.

  30. Ramodanov, S.M., On the Influence of Circulation on the Behavior of a Rigid Body Falling in a Fluid, Izv. Akad. Nauk. Mekh. tverd. tela, 1996, no. 5, pp. 19–24.

  31. Steklov, V.A., On Some Possible Motions of a Solid Body in Fluid, Trudy Otd. Fiz. Nauk Ob-va Lyubitelei Estestvoznaniya, Antropologii i Etnografii, 1895, vol. 7, pp. 1–40.

    Google Scholar 

  32. Bertolli, M.L. and Bolotin, S.V., Doubly asymptotic trajectories of Lagrangian systems in homogeneous force fields, Ann. Mat. Pura Appl. (4), 1998, vol. 174, pp. 253–275.

    Article  MathSciNet  Google Scholar 

  33. Borisov, A.V. and Kir’yanov, A.I., Non-Integrability of the Kirchhoff Equations, Mathematical Methods in Mechanics, Moscow: Izd. Mosk. Univer., 1990, pp. 13–18.

    Google Scholar 

  34. Neishtadt, A.I., Evolution of Rotation of a Rigid Body Acted upon by a Sum of Constant and Dissipative Perturbing Moments, Izv. Akad. Nauk. Mekh. tverd. tela, 1980, no. 6, pp. 30–36.

  35. Kozlov, V.V. and Onishchenko, D.A., Non-Integrability of the Kirchhoff equations, Dokl. Akad. Nauk SSSR, 1982, vol. 266, no. 6, pp. 1298–1300.

    MathSciNet  Google Scholar 

  36. Aref, H. and Jones S.W., Chaotic Motion of a Solid Through Ideal Fluid, Phys. Fluids A, 1993, vol. 5, no. 12, pp. 3026–3028.

    Article  MATH  MathSciNet  Google Scholar 

  37. Borisov, A.V. Mamaev, I.S., and Kholmskaya, A.G. The Kovalevskaya Case and New Integrable Systems of Dynamics, Vestnik molodyh uchenyh. “Prikladnaya matematika i mekhanika”, 2000, no. 4, pp. 13–25.

  38. Deryabin, M.V., On Stability of Uniformly Accelerated Rotations of a Heavy Rigid Body in Ideal Fluid, Izv. Akad. Nauk. Mekh. tverd. tela, 2002, no. 5, pp. 30–34.

  39. Deryabin, M.V., On Stability of Uniformly-Accelerated Motions of an Axially-Symmetric Rigid Body in an Ideal Fluid, Z. Angew. Math. Mech., 2003, vol. 83, no. 3, pp. 197–203.

    Article  MATH  MathSciNet  Google Scholar 

  40. Chaplygin, S.A., On the Theory of the Motion of Nonholonomic Systems. Theorem on the Reducing Multiplier, Mat. Sbornik, 1911, vol. 28, no. 2, pp. 303–314.

    Google Scholar 

  41. Carathéodory C., Der Schlitten, Z. Angew. Math. Mech., 1933, Bd. 13, S. 71–76.

    Article  MATH  Google Scholar 

  42. Neimark, Yu.I. and Fufaev N.A., Dinamika negolonomnyh sistem (Dynamics of Nonholonomic Systems), Moscow: Nauka, 1967.

    Google Scholar 

  43. Rand, R.H. and Ramani, D.V., Relaxing Nonholonomic Constraints, Proc. 1st Int. Symp. on Impact and Friction of Solids, Structures, and Intelligent Machines, Singapore: World Sci., 2000, pp. 91–100.

    Google Scholar 

  44. Osborne, J.M. and Zenkov, D.V., Steering the Chaplygin Sleigh by a Moving Mass, Proc. 44th IEEE Conf. on Decision and Control, and the Europ. Control Conf. 2005, Seville, Spain, Dec. 12–15, 2005, pp. 1114–1118.

  45. Kozlov, V.V., Realization of Nonintegrable Constraints in Classical Mechanics, Dokl. Akad. Nauk SSSR, 1983, vol. 272, no. 3, pp. 550–554.

    MathSciNet  Google Scholar 

  46. Kozlov, V.V., The Dynamics of Systems with Nonintegrable Constraints. I., Vestnik Moskov. Univ. Ser. 1 Mat. Mekh., 1982, no. 3, pp. 92–100.

  47. Kozlov, V.V., The Dynamics of Systems with Nonintegrable Constraints. II., Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1982, no. 4, pp. 70–76.

  48. Kozlov, V.V., The Dynamics of Systems with Nonintegrable Constraints. III., Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1983, no. 3, pp. 102–111.

  49. Kozlov, V.V., The Dynamics of Systems with Nonintegrable Constraints. IV., Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1987, no. 5, pp. 76–83.

  50. Kozlov, V.V., The Dynamics of Systems with Nonintegrable Constraints. V., Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1988, no. 6, pp. 51–54.

  51. Bloch, A.M., Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24. Systems and Control. New York: Springer-Verlag, 2003.

    Google Scholar 

  52. Lewis, A.D. and Murray, R.M. Variational Principles for Constrained Systems: Theory and Experiment. Internat. J. Non-Linear Mech., 1995, vol. 30, no. 6, pp. 793–815.

    Article  MATH  MathSciNet  Google Scholar 

  53. Kozlov, V.V., On the Realization of Constraints in Dynamics, Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 692–698 [Appl. Math. Mech., 1992, vol. 56, no. 4, pp. 594–600].

    MathSciNet  Google Scholar 

  54. Kozlov V.V., On the Integration Theory of Equations of Nonholonomic Mechanics, Uspekhi mekhaniki, 1985, vol. 8, no. 3, pp. 85–107. English version: Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 191–176.

    MathSciNet  Google Scholar 

  55. Borisov, A.V. and Mamaev, I.S., Strange Attractors in Rattleback Dynamics, Uspehi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 407–418 [Physics-Uspekhi, 2003, vol. 46, no. 4, pp. 393–403].

    MathSciNet  Google Scholar 

  56. Abramowitz, M. and Stegun, I. Handbook of Mathematical Functions. New York: Dover Publications Inc., 1965, 1046 p.

    Google Scholar 

  57. Chetaev, N.G., Ustoichivost’ dvizheniya (Stability of Motion), Moscow: Nauka, 1990.

    Google Scholar 

  58. Moshchuk, N.K., On the Motion of Chaplygin’s Sledge, Prikl. Mat. Mekh., 1987, vol. 51, no. 4, pp. 546–551 [J. Appl. Math. Mech., 1988, vol. 51, no. 4, pp. 426–430].

    MathSciNet  Google Scholar 

  59. Zhuravlev, V.F. and Fufaev, N.A. Mekhanika sistem s neuderzhivayushchimi svyazyami (Mechanics of Systems with Unilateral Constraints), Moscow: Nauka, 1993, 240 pp.

    MATH  Google Scholar 

  60. Borisov A.V., and Mamaev, I.S., Motion of Chaplygin Ball on an Inclined Plane, Dokl. Akad. Nauk, 2006, vol. 406, no. 5, pp. 620–623 [Doklady Physics, 2006, vol. 51, no. 2, pp. 73–76].

    MathSciNet  Google Scholar 

  61. Zhukovskii, N.E., On light elongated bodies that fall in the air while rotating around the longitudinal axis: Paper I. Complete Works, Moscow-Leningrad: Akad. Nauk SSSR, vol. 5, 1937, pp. 72–80.

    Google Scholar 

  62. Zhukovskii, N.E., On the Fall in Air of Light, Oblong Bodies Rotating about Their Longitudinal Axis. Paper II. Complete Works, Moscow-Leningrad: Akad. Nauk SSSR, vol. 5, 1937, pp. 100–105.

    Google Scholar 

  63. Maxwell, J.C., On a Particular Case of the Descent of a Heavy Rigid Body in a Resisting Medium, Camb. Dublin Math. J., 1853, vol. 9, pp. 115–118.

    Google Scholar 

  64. Maxwell, J.C., The Scientific Letters and Papers of James Clerk Maxwell, Vol. I, Edited by P.M. Harman, Cambridge: Cambridge Univ. Press., 1990, p. 115.

    Google Scholar 

  65. Mouillard, L.P. L’empier de l’air, Paris, 1881, 211 p. English transl.: The Empire Of The Air, Smithsonian Institution, 1893.

  66. Chaplygin, S.A., On the effect of a plane-parallel air flow on a cylindrical wing moving in it, Complete Works, Leningrad: Izd. Akad. Nauk SSSR, 1933, Vol. 3, pp. 3Ц–64.

    Google Scholar 

  67. Lamb, H., Hydrodynamics, 6th ed., Cambridge: Cambridge Univ. Press, 1932.

    MATH  Google Scholar 

  68. Borisov, A.V and Mamaev, I.S., On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation, Chaos, 2006, Vol. 16, no. 1, 013118 (7 pages).

  69. Andersen A., Pesavento, U. and Jane Wang, Z., Analysis of Transitions Between Fluttering, Tumbling and Steady Descent of Falling Cards. J. Fluid Mech., 2005, vol. 541, pp. 91–104.

    Article  MATH  MathSciNet  Google Scholar 

  70. Andersen A., Pesavento, U. and Jane Wang, Z., Unsteady Aerodynamics of Fluttering and Tumbling Plates. J. Fluid Mech., 2005, vol. 541, pp. 65–90.

    Article  MATH  MathSciNet  Google Scholar 

  71. Belmonte, A., Eisenberg, H., and Moses, E., From Flutter to Tumble: Inertial Drag and Froude Similarity in Falling Paper, Phys. Rev. Lett., 1998, vol. 81, pp. 345–348.

    Article  Google Scholar 

  72. Mahadevan, L., Tumbling of a Falling Card, C. R. Acad. Sci. Paris, 1996, t. 323, pp. 729Ц–736.

    Google Scholar 

  73. Mahadevan, L., Ryu, W.S., and Samuel, A.D.T, Tumbling cards, Phys. Fluids, 1999, vol. 11, pp. 1–3.

    Article  Google Scholar 

  74. Pesavento, U. and Jane Wang, Z., Falling paper: Navier-Stokes Solutions, Model of Fluid Forces, and Center of Mass Elevation, Phys. Rev. Lett., 2004, vol. 93, 144501.

  75. Field, S.B., Klaus, M., Moore, M.G., and Nori, F., Chaotic Dynamics of Falling Disks, Nature, 1997, vol. 388, pp. 252–254.

    Article  Google Scholar 

  76. Willmarth, W.W., Hawk, N.E. and Harvey, R.L., Steady and unsteady motions and wakes of freely falling disks, Phys. Fluids, 1964, vol. 7, pp. 197–208.

    Article  MATH  Google Scholar 

  77. Tanabe, Y. and Kaneko, K., Behavior of a Falling Paper, Phys. Rev. Lett., 1994, vol. 73, pp. 1372–1375.

    Article  Google Scholar 

  78. Aref, H., Mahadevan, L., and Jones, S.W. Comment on “Behavior of a Falling Paper” (Y. Tanabe and K. Kaneko, Phys. Rev. Lett., 1994, vol. 73, 1372–1375), Phys. Fluids A., 1995, vol. 57, pp. 1420–14

    Google Scholar 

  79. Kozlov, V.V., On a Problem of a Heavy Rigid Body Falling in a Resisting Medium, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1990, no. 1, pp. 79–86.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Borisov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.V., Kozlov, V.V. & Mamaev, I.S. Asymptotic stability and associated problems of dynamics of falling rigid body. Regul. Chaot. Dyn. 12, 531–565 (2007). https://doi.org/10.1134/S1560354707050061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354707050061

MSC2000 numbers

Key words

Navigation