Skip to main content
Log in

The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions

  • Articles
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider nonholonomic systems with linear, time-independent constraints subject to positional conservative active forces. We identify a distribution on the configuration manifold, that we call the reaction-annihilator distribution ℜ°, the fibers of which are the annihilators of the set of all values taken by the reaction forces on the fibers of the constraint distribution. We show that this distribution, which can be effectively computed in specific cases, plays a central role in the study of first integrals linear in the velocities of this class of nonholonomic systems. In particular we prove that, if the Lagrangian is invariant under (the lift of) a group action in the configuration manifold, then an infinitesimal generator of this action has a conserved momentum if and only if it is a section of the distribution ℜ°. Since the fibers of ℜ° contain those of the constraint distribution, this version of the nonholonomic Noether theorem accounts for more conserved momenta than what was known so far. Some examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostinelli, C., Nuova Forma Sintetica Delle Equazioni del Moto di un Sistema Anolonomo ed Esistenza di un Integrale Lineare Nelle Velocità, Boll. Un. Mat. Ital., 1956, vol. 11, pp. 1–9.

    MATH  MathSciNet  Google Scholar 

  2. Kozlov, V.V. and Kolesnikov, N.N., On Theorems of Dynamics, J. Appl. Math. Mech., 1978, vol. 42, no. 1, pp. 28–33 (in Russian).

    Article  MathSciNet  Google Scholar 

  3. Arnol’d, V.I., Kozlov, V.V., and Neishtadt, A.I., Mathematical Aspects of Classical and Celestial Mechanics. Dynamical Systems, III. Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 1993.

    Google Scholar 

  4. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., and Murray, R.M., Nonholonomic Mechanical Systems with Symmetry, Arch. Rational Mech. Anal., 1996, vol. 136, pp. 21–99.

    Article  MATH  MathSciNet  Google Scholar 

  5. Cantrjn, F., de Leon, M., de Diego, M., and Marrero, J., Reduction of Nonholonomic Mechanical Systems with Symmetries, Rep. Math. Phys., 1998, vol. 42, pp. 25–45.

    Article  MathSciNet  Google Scholar 

  6. de Leon, M., Cortes, J., de Diego, M. and Martínez, S., Introduction to Mechanics and Symmetry, in Bajo, I. and Sanmartin E. (eds.), Recent Advances in Lie Theory. Research and Exposition inMathematics Series, vol. 25, pp. 305–332, Heldermann Verlag, 2002.

  7. Marle, C.-M., On Symmetries and Constants of Motion in Hamiltonian Systems with Nonholonomic Constraints, in Classical and Quantum Integrability (Warsaw, 2001), pp. 223–242, Banach Center Publ., vol. 59, Polish Acad. Sci., Warsaw, 2003.

    Google Scholar 

  8. Bloch, A.M., Nonholonomic Mechanics and Controls. Interdisciplinary Applied Mathematics, vol. 24, Systems and Control, New-York: Springer-Verlag, 2003.

    Google Scholar 

  9. Duistermaat, J.J., Chaplygin’s Sphere, arXiv:math/0409019, 2004.

  10. Cushman, R., Kemppainen, D., Śniatycki, J., and Bates, L., Geometry of Nonholonomic Constraints, Proceedings of the XXVII Symposium on Mathematical Physics (Toruń, 1994), Rep. Math. Phys., 1995, vol. 36, pp. 275–286.

    MATH  Google Scholar 

  11. Śniatycki, J., Nonholonomic Noether Theorem and Reduction of Symmetries, Rep. Math. Phys., 1998, vol. 42, pp. 5–23.

    Article  MathSciNet  Google Scholar 

  12. Koiller, J., Reduction of Some Classical Nonholonomic Systems with Symmetry, Arch. Rat. Mech. An., 1992, vol. 118, pp. 113–138.

    Article  MATH  MathSciNet  Google Scholar 

  13. Cantrjn, F., Cortes, J., de Leon, M., and de Diego, M., On the Geometry of Generalized Chaplygin Systems, Math. Proc. Cambridge Phil. Soc., 2002, vol. 132, pp. 323–351.

    Google Scholar 

  14. Cortés Monforte, J., Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics, vol. 1793, Berlin: Springer-Verlag, 2002.

    MATH  Google Scholar 

  15. Iliev, Il. and Semerdzhiev, Khr., Relations between the First Integrals of a Nonholonomic Mechanical System and of the Corresponding System Freed of Constraints., J. Appl. Math. Mech., 1972, vol. 36, pp. 381–388.

    Article  MATH  MathSciNet  Google Scholar 

  16. Iliev, Il., On First Integrals of a Nonholonomic Mechanical System, J. Appl. Math. Mech., 1975, vol. 39, pp. 147–150.

    Article  MATH  MathSciNet  Google Scholar 

  17. Neimark, Ju.I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33, Providence: AMS, 1972.

    MATH  Google Scholar 

  18. Bullo F., and Lewis, A.D., Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, vol. 49, New-York: Springer-Verlag, 2005.

    MATH  Google Scholar 

  19. Arnold, V.I., Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60, New-York: Springer-Verlag, 1989.

    Google Scholar 

  20. Abraham, R. and Marsden, J.E., Foundations of Mechanics, Benjamin, Reading, 1978.

    MATH  Google Scholar 

  21. Bates, L. and Śniatycki, J., Nonholonomic Reduction, Rep. Math. Phys., 1993, vol. 32, pp. 99–115.

    Article  MATH  MathSciNet  Google Scholar 

  22. Pars, L., A Treatise on Analytical Dynamics, New-York: Heinemann, 1965.

    MATH  Google Scholar 

  23. Bates, L., Graumann, H., and MacDonnell, C., Examples of Gauge Conservation Laws in Nonholonomic Systems, Rep. Math. Phys., 1996, vol. 37, pp. 295–308.

    Article  MATH  MathSciNet  Google Scholar 

  24. Zenkov, D.V., Linear Conservation Laws of Nonholonomic Systems with Symmetry, in Dynamical Systems and Differential Equations (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst., 2003, suppl., pp. 967–976.

  25. Fassò, F., Giacobbo, A., and Sansonetto, N., Gauge Integrals, the Nonholonomic Momentum Equation, and the Reaction-Annihilator Distribution (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fassò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fassò, F., Ramos, A. & Sansonetto, N. The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions. Regul. Chaot. Dyn. 12, 579–588 (2007). https://doi.org/10.1134/S1560354707060019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354707060019

MSC2000 numbers

Key words

Navigation