Skip to main content
Log in

Optimal control of vibrationally excited locomotion systems

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Optimal controls are constructed for two types of mobile systems propelling themselves due to relative oscillatory motions of their parts. The system of the first type is modelled by a rigid body (main body) to which two links are attached by revolute joints. All three bodies interact with the environment with the forces depending on the velocity of motion of these bodies relative to the environment. The system is controlled by high-frequency periodic angular oscillations of the links relative to the main body. The system of the other type consists of two bodies, one of which (the main body) interacts with the environment and with the other body (internal body), which interacts with the main body but does not interact with the environment. The system is controlled by periodic oscillations of the internal body relative to the main body. For both systems, the motions with the main body moving along a horizontal straight line are considered. Optimal control laws that maximize the average velocity of the main body are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blake, R.W., Fish Locomotion, Cambridge: Cambridge Univ. Press, 1975.

    Google Scholar 

  2. Bogolyubov, N.N. and Mitropolski, Y.A., Asymptotic Methods in the Theory of Nonlinear Oscillations, New York: Gordon and Breach Sci., 1961.

    Google Scholar 

  3. Bolotnik, N.N. and Figurina, T.Yu., Optimal Control of the Rectilinear Motion of a Rigid Body on a Rough Plane by the Displacement of Two Internal Masses, Prikl. Mat. Mekh., 2008, vol. 72, no. 2, pp. 216–229 [J. Appl. Math. Mech., 2008, vol. 72, no. 2, pp. 126–135].

    MathSciNet  MATH  Google Scholar 

  4. Bolotnik, N.N., Figurina, T.Yu., and Chernousko, F. L., Optimal Control of the Rectilinear Motion of a Two-Body System in a Resistive Medium, Prikl. Mat. Mekh., 2012, vol. 76, no. 1, pp. 3–22 [J. Appl. Math. Mech., 2012, vol. 76, no. 1, pp. 1–14].

    Google Scholar 

  5. Bolotnik, N., Pivovarov, M., Zeidis, I., and Zimmermann, K., The Undulatory Motion of a Chain of Particles in a Resistive Medium, ZAMM, 2011, vol. 91, no. 4, pp. 259–275.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolotnik, N.N., Zeidis, I., Zimmermann, K., and Yatsun, S. F., Dynamics of Controlled Motion of Vibration-Driven Systems, Izv. Ross. Akad. Nauk Teor. Sist. Upr., 2006, no. 5, pp. 157–167 [J. Comput. Syst. Sci. Int., 2006, vol. 45, no. 5, pp. 481–496].

    Google Scholar 

  7. Chernous’ko, F. L., The Motion of a Multilink System along a Horizontal Plane, Prikl. Mat. Mekh., 2000, vol. 64, no. 1, pp. 8–18 [J. Appl. Math. Mech., 2000, vol. 64, no. 1, pp. 5–15].

    MathSciNet  MATH  Google Scholar 

  8. Chernous’ko, F. L., The Wavelike Motion of a Multilink System on a Horizontal Plane, Prikl. Mat. Mekh., 2000, vol. 64, no. 4, pp. 518–531 [J. Appl. Math. Mech., 2000, vol. 64, no. 4, pp. 497–508].

    MathSciNet  MATH  Google Scholar 

  9. Chernous’ko, F. L., The Motion of a Flat Linkage over a Horizontal Plane, Dokl. Phys., 2000, vol. 45, no. 1, pp. 42–45.

    Article  MathSciNet  Google Scholar 

  10. Chernous’ko, F. L., The Motion of a Three-Link System along a Plane, Prikl. Mat. Mekh., 2001, vol. 65, no. 1, pp. 15–20 [J. Appl. Math. Mech., 2001, vol. 65, no. 1, pp. 13–18].

    MATH  Google Scholar 

  11. Chernous’ko, F. L., Controllable Motions of a Two-Link Mechanism along a Horizontal Plane, Prikl. Mat. Mekh., 2001, vol. 65, no. 4, pp. 578–591 [J. Appl. Math. Mech., 2001, vol. 65, no. 4, pp. 565–577].

    MathSciNet  MATH  Google Scholar 

  12. Chernous’ko, F. L., The Optimum Rectilinear Motion of a Two-Mass System, Prikl. Mat. Mekh., 2002, vol. 66, no. 1, pp. 3–9 [J. Appl. Math. Mech., 2002, vol. 66, no. 1, pp. 1–7].

    MathSciNet  MATH  Google Scholar 

  13. Chernous’ko, F. L., Snake-Like Locomotions of Multilink Mechanisms, J. Vib. Control, 2003, vol. 9, nos. 1–2, pp. 235–256.

    MathSciNet  Google Scholar 

  14. Chernous’ko, F. L., The Motion of Multibody Linkages along a Plane, in Problems of Mechanics: Collected Papers Dedicated to the 90th Birthday of A.Yu. Ishlinskii, D.M. Klimov (Ed.), Moscow: Fizmatlit, 2003, pp. 783–802 (Russian).

    Google Scholar 

  15. Chernous’ko, F. L., On the Motion of a Body Containing a Movable Internal Mass, Dokl. Phys., 2005, vol. 50, no. 11, pp. 593–597.

    Article  Google Scholar 

  16. Chernous’ko, F. L., Analysis and Optimization of the Motion of a Body Controlled by a Movable Internal Mass, Prikl. Mat. Mekh., 2006, vol. 70, no. 6, pp. 915–941 [J. Appl. Math. Mech., 2006, vol. 70, no. 6, pp. 915–941].

    MathSciNet  MATH  Google Scholar 

  17. Chernous’ko, F. L., The Optimal Periodic Motions of a Two-Mass System in a Resistant Medium, Prikl. Mat. Mekh., 2008, vol. 72, no. 2, pp. 202–215 [J. Appl. Math. Mech., 2006, vol. 72, no. 2, pp. 116–125].

    MathSciNet  MATH  Google Scholar 

  18. Chernousko, F. L., On the Optimal Motion of a Body with an Internal Mass in a Resistive Medium, J. Vib. Control, 2008, vol. 14, nos. 1–2, pp. 197–208.

    Article  MathSciNet  MATH  Google Scholar 

  19. Chernous’ko, F. L., Motion of a Body in a Fluid Due to Attached-Link Oscillations, Dokl. Phys., 2010, vol. 55, no. 3, pp. 138–141.

    Article  MATH  Google Scholar 

  20. Chernous’ko, F. L., Optimal Motion of a Two-Body System in a Resistive Medium, J. Optim. Theory Appl., 2010, vol. 147, no. 2, pp. 278–297.

    Article  MathSciNet  Google Scholar 

  21. Chernous’ko, F. L., Optimal Motion of a Multilink System in a Resistive Medium, Tr. Inst. Mat. i Mekh. UrO RAN, 2011, vol. 17, no. 2, pp. 240–255 [Proc. Steklov Inst. Math., 2012, vol. 276, no. 1 Suppl., pp. 63–79].

    Google Scholar 

  22. Chernous’ko, F. L., Analysis and Optimization of the Rectilinear Motion of a Two-Body System, Prikl. Mat. Mekh., 2011, vol. 75, no. 5, pp. 707–717 [J. Appl. Math. Mech., 2011, vol. 75, no. 5, pp. 493–500].

    MathSciNet  Google Scholar 

  23. Chernous’ko, F. L., Optimal Control of the Motion of a Multilink System in a Resistive Medium, Prikl. Mat. Mekh., 2012, vol. 76, no. 3, pp. 355–373 [J. Appl. Math. Mech., 2012, vol. 76, no. 3, pp. 255–267].

    Google Scholar 

  24. Chernous’ko, F. L. and Shunderyuk, M.M., The Influence of Friction Forces on the Dynamics of a Two-Link Mobile Robot, Prikl. Mat. Mekh., 2010, vol. 74, no. 1, pp. 22–36 [J. Appl. Math. Mech., 2010, vol. 74, no. 1, pp. 13–23].

    MathSciNet  Google Scholar 

  25. Colgate, J. E. and Lynch, K.M., Mechanics and Control of Swimming: A Review, IEEE J. Oceanic Eng., 2004, vol. 29, no. 3, pp. 660–673.

    Article  Google Scholar 

  26. Yegorov, A.G. and Zakharova, O. S., The Energy-Optimal Motion of a Vibration-Driven Robot in a Resistive Medium, Prikl. Mat. Mekh., 2010, vol. 74, no. 4, pp. 620–632 [J. Appl. Math. Mech., 2010, vol. 74, no. 4, pp. 443–451].

    Google Scholar 

  27. Fang, H.B. and Xu, J., Dynamic Analysis and Optimization of a Three-Phase Control Mode of a Mobile System with an Internal Mass, J. Vib. Control, 2011, vol. 74, no. 4, pp. 443–451.

    Google Scholar 

  28. Fang, H.B. and Xu, J., Dynamic of a Three-Module Vibration-Driven System with Non-Symmetric Coulomb’s Dry Friction, Multibody Syst. Dyn., 2012, vol. 27, no. 4, pp. 455–485.

    Article  MathSciNet  MATH  Google Scholar 

  29. Figurina, T.Yu., Controlled Quasistatic Motions of a Two-Link Robot on a Horizontal Plane, Izv. Ross. Akad. Nauk Teor. Sist. Upr., 2004, no. 3, pp. 160–176 [J. Comput. Syst. Sci. Int., 2004, vol. 43, no. 3, pp. 481–496].

    Google Scholar 

  30. Figurina, T.Yu., Quasi-Static Motion of a Two-Link System along a Horizontal Plane, Multibody Syst. Dyn., 2004, vol. 11, no. 3, pp. 251–272.

    Article  MathSciNet  MATH  Google Scholar 

  31. Figurina, T.Yu., Controlled Slow Motions of a Three-Link Robot on a Horizontal Plane, Izv. Ross. Akad. Nauk Teor. Sist. Upr., 2005, no. 3, pp. 149–156 [J. Comput. Syst. Sci. Int., 2005, vol. 44, no. 3, pp. 473–480].

    Google Scholar 

  32. Figurina, T.Yu., Optimal Control of the Motion of a Two-Body System along a Straight Line, Izv. Ross. Akad. Nauk Teor. Sist. Upr., 2007, no. 2, pp. 65–71 [J. Comput. Syst. Sci. Int., 2007, vol. 46, no. 2, pp. 227–233].

    Google Scholar 

  33. Grey, J., Animal Locomotion, New York: Norton, 1968.

    Google Scholar 

  34. Hirose, S., Biologically Inspired Robots: Snake-Like Locomotors and Manipulators, Oxford: Oxford Univ. Press, 1993.

    Google Scholar 

  35. Lighthill, J., Mathematical Biofluiddynamics, Philadelphia: SIAM, 1975.

    Book  MATH  Google Scholar 

  36. Mason, R. and Burdick, J., Construction and Modelling of a Carangiform Robotic Fish, in Experimental Robotics VI, P. I. Corke, J. Trevelyan (Eds.), Lecture Notes in Control and Inform. Sci., vol. 250, New York: Springer, 1999, pp. 235–242.

    Chapter  Google Scholar 

  37. Morgansen, K.A., Duindam, V., Mason, R. J., Burdick, J.W., and Murray, R.M., Nonlinear Control Methods for Planar Carangiform Robot Fish Locomotion, in Proc. 2001 IEEE Internat. Conf. on Robotics and Automation, pp. 427–434.

  38. Pontryagin, L. S., Boltyanskii, V.G., Gamkrelidze, R. F., and Mishchenko, E.F., The Mathematical Theory of Optimal Processes, New York: Macmillan, 1964.

    MATH  Google Scholar 

  39. Robo Tuna, http://en.wikipedia.org/wiki/Robo Tuna# References

  40. Saito, M., Fukaya, M., and Iwasaki, T., Modeling, Analysis, and Synthesis of Seprentine Locomotion with a Multilink Robotic Snake, IEEE Contr. Syst. Mag., 2002, vol. 22, no. 1, pp. 64–81.

    Article  Google Scholar 

  41. Smyshlyaev, A. S. and Chernous’ko, F. L., Optimization of the Motion of Multilink Robots on a Horizontal Plane, Izv. Ross. Akad. Nauk Teor. Sist. Upr., 2001, no. 2, pp. 176–184 [J. Comput. Syst. Sci. Int., 2001, vol. 40, no. 2, pp. 340–348].

    Google Scholar 

  42. Sobolev, N.A. and Sorokin, K. S., Experimental Investigation of Snakelike Motions of a Three-Link Mechanism, Izv. Ross. Akad. Nauk Teor. Sist. Upr., 2006, no. 5, pp. 168–176 [J. Comput. Syst. Sci. Int., 2006, vol. 45, no. 5, pp. 841–849].

    Google Scholar 

  43. Sorokin, K. S., Control of a Three-Link Robot Moving on the Plane with Friction, Izv. Ross. Akad. Nauk Teor. Sist. Upr., 2009, no. 3, pp. 165–176 [J. Comput. Syst. Sci. Int., 2009, vol. 48, no. 3, pp. 489–500].

    Google Scholar 

  44. Sorokin, K. S., Motion of a Mechanism along a Rough Inclined Plane Using the Motion of Internal Oscillating Masses, Izv. Ross. Akad. Nauk Teor. Sist. Upr., 2009, no. 6, pp. 150–158 [J. Comput. Syst. Sci. Int., 2009, vol. 48, no. 6, pp. 993–1001].

    Google Scholar 

  45. Terada, Y. and Yamamoto, I., Development of Oscillating Fin Propulsion System and Its Application to Ships and Artificial Fish, Mitsubishi Heavy Ind. Tech. Rev., 1999, vol. 36, pp. 84–88.

    Google Scholar 

  46. Zimmermann, K. and Zeidis, I., Worm-Like Locomotion as a Problem of Nonlinear Dynamics, J. Theoret. Appl. Mech., 2007, vol. 45, no. 1, pp. 179–187.

    Google Scholar 

  47. Zimmermann, K., Zeidis, I., and Behn, C., Mechanics of Terrestrial Locomotion with a Focus on Nonpedal Motion Systems, Heidelberg: Springer, 2010.

    Google Scholar 

  48. Zimmermann, K., Zeidis, I., Bolotnik, N. and Pivovarov, M., Dynamics of a Two-Module Vibration-Driven System Moving along a Rough Horizontal Plane, Multibody Syst. Dyn., 2009, vol. 22, no. 1, pp. 199–219.

    Article  MathSciNet  MATH  Google Scholar 

  49. Zimmermann, K., Zeidis, I., and Pivovarov, M., Dynamics of Two Interconnected Mass Points in a Resistive Medium, Differential Equations Dynam. Systems, 2013, vol. 21, nos. 1–2, pp. 21–28.

    Article  MathSciNet  MATH  Google Scholar 

  50. Zimmermann, K., Zeidis, I., Pivovarov, M., and Abaza, K., Forced Nonlinear Oscillator with Nonsymmetric Dry Friction, Arch. Appl. Mech., 2007, vol. 77, no. 5, pp. 353–362.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix L. Chernousko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernousko, F.L., Bolotnik, N.N. & Figurina, T.Y. Optimal control of vibrationally excited locomotion systems. Regul. Chaot. Dyn. 18, 85–99 (2013). https://doi.org/10.1134/S1560354713010061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354713010061

MSC2010 numbers

Keywords

Navigation