Skip to main content
Log in

Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we give a new construction of resonant normal forms with a small remainder for near-integrable Hamiltonians at a quasi-periodic frequency. The construction is based on the special case of a periodic frequency, a Diophantine result concerning the approximation of a vector by independent periodic vectors and a technique of composition of periodic averaging. It enables us to deal with non-analytic Hamiltonians, and in this first part we will focus on Gevrey Hamiltonians and derive normal forms with an exponentially small remainder. This extends a result which was known for analytic Hamiltonians, and only in the periodic case for Gevrey Hamiltonians. As applications, we obtain an exponentially large upper bound on the stability time for the evolution of the action variables and an exponentially small upper bound on the splitting of invariant manifolds for hyperbolic tori, generalizing corresponding results for analytic Hamiltonians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bambusi, D., Nekhoroshev Theorem for Small Amplitude Solutions in Nonlinear Schrödinger Equations, Math. Z., 1999, vol. 230, no. 2, pp. 345–387.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bounemoura, A. and Fischler, S., A Diophantine Duality Applied to the KAM and Nekhoroshev Theorems, Math. Z., 2013 (to appear).

    Google Scholar 

  3. Baldomá, I., Fontich, E., Guardia, M., and Seara, Tere M., Exponentially Small Splitting of Separatrices beyond Melnikov Analysis: Rigorous Results, J. Differential Equations, 2012, vol. 253, no. 12, pp. 3304–3439.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bounemoura, A. and Niederman, L., Generic Nekhoroshev Theory without Small Divisors, Ann. Inst. Fourier (Grenoble), 2012, vol. 62, no. 1, pp. 277–324.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bounemoura, A., Nekhoroshev Estimates for Finitely Differentiable Quasi-Convex Hamiltonians, J. Differential Equations, 2010, vol. 249, no. 11, pp. 2905–2920.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bounemoura, A., Effective Stability for Gevrey and Finitely Differentiable Prevalent Hamiltonians, Comm. Math. Phys., 2011, vol. 307, no. 1, pp. 157–183.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bounemoura, A., Optimal Stability and Instability for Near-Linear Hamiltonians, Ann. Henri Poincaré, 2012, vol. 13, no. 4, pp. 857–868.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bounemoura, A., Normal Forms, Stability and Splitting of InvariantManifolds: II. Finitely Differentiable Hamiltonians, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 261–276.

    Article  Google Scholar 

  9. Bolotin, S.V. and Treschev, D.V., Remarks on the Definition of Hyperbolic Tori of Hamiltonian Systems, Regul. Chaotic Dyn., 2000, vol. 5, no. 4, pp. 401–412.

    Article  MathSciNet  MATH  Google Scholar 

  10. Delshams, A. and Gutiérrez, P., Effective Stability and KAM Theory, J. Differential Equations, 1996, vol. 128, no. 2, pp. 415–490.

    Article  MathSciNet  MATH  Google Scholar 

  11. Fass`o, F., Lie Series Method for Vector Fields and Hamiltonian Perturbation Theory, Z. Angew. Math. Phys., 1990, vol. 41, no. 6, pp. 843–864.

    Article  MathSciNet  Google Scholar 

  12. Lochak, P., Marco, J.-P., and Sauzin, D., On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems, Mem. Amer. Math. Soc., 2003, vol. 163, no. 775, 145 pp.

    Google Scholar 

  13. Loshak, P., Canonical Perturbation Theory: An Approach Based on Joint Approximations, Uspekhi Mat. Nauk, 1992, vol. 47, no. 6(288), pp. 59–140 [Russian Math. Surveys, 1992, vol. 47, no. 6, pp. 57–133].

    MathSciNet  Google Scholar 

  14. Marco, J.-P., Sur les bornes inférieures de l’écart des variétés invariantes, C. R. Math. Acad. Sci. Paris, 2005, vol. 340, no. 11, pp. 839–842.

    Article  MathSciNet  MATH  Google Scholar 

  15. Mitev, T. and Popov, G., Gevrey Normal Form and Effective Stability of Lagrangian Tori, Discrete Contin. Dyn. Syst. Ser. S, 2010, vol. 3, no. 4, pp. 643–666.

    Article  MathSciNet  MATH  Google Scholar 

  16. Marco, J.-P. and Sauzin, D., Stability and Instability for Gevrey Quasi-Convex Near-Integrable Hamiltonian Systems, Publ. Math. Inst. Hautes Études Sci., 2002, no. 96, pp. 199–275.

    Google Scholar 

  17. Nekhoroshev, N. N., An Exponential Estimate of the Time of Stability of Nearly-Integrable Hamiltonian Systems, Uspekhi Mat. Nauk, 1977, vol. 32, no. 6(198), pp. 5–66 [Russian Math. Surveys, 1977, vol. 32, no. 6, pp. 1–65].

    MATH  Google Scholar 

  18. Pöschel, J., Nekhoroshev Estimates for Quasi-Convex Hamiltonian Systems, Math. Z., 1993, vol. 213, no. 2, pp. 187–216.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pöschel, J., On Nekhoroshev Estimates for a Nonlinear Schrödinger Equation and a Theorem by Bambusi, Nonlinearity, 1999, vol. 12, no. 6, pp. 1587–1600.

    Article  MathSciNet  MATH  Google Scholar 

  20. Ramis, J.-P. and Schäfke, R., Gevrey Separation of Fast and Slow Variables, Nonlinearity, 1996, vol. 9, no. 2, pp. 353–384.

    Article  MathSciNet  MATH  Google Scholar 

  21. Simó, C., Averaging under Fast Quasiperiodic Forcing, in Hamiltonian mechanics (Toruń, 1993), NATO Adv. Sci. Inst. Ser. B Phys., vol. 331, New York: Plenum, 1994, pp. 13–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abed Bounemoura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bounemoura, A. Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians. Regul. Chaot. Dyn. 18, 237–260 (2013). https://doi.org/10.1134/S1560354713030040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354713030040

MSC2010 numbers

Keywords

Navigation