Skip to main content
Log in

Persistence of Diophantine flows for quadratic nearly integrable Hamiltonians under slowly decaying aperiodic time dependence

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to prove a Kolmogorov type result for a nearly integrable Hamiltonian, quadratic in the actions, with an aperiodic time dependence. The existence of a torus with a prefixed Diophantine frequency is shown in the forced system, provided that the perturbation is real-analytic and (exponentially) decaying with time. The advantage consists in the possibility to choose an arbitrarily small decaying coefficient consistently with the perturbation size.

The proof, based on the Lie series formalism, is a generalization of a work by A. Giorgilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V. I., Proof of a Theorem of A.N.Kolmogorov on the Invariance of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian, Russian Math. Surveys, 1963, vol. 18, no. 5, pp. 9–36; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 5, pp. 13–40.

    Article  MATH  Google Scholar 

  2. Berti, M., Bolle, P., and Procesi, M., An Abstract Nash-Moser Theorem with Parameters and Applications to PDEs, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010, vol. 27, no. 1, pp. 377–399.

    Article  MathSciNet  MATH  Google Scholar 

  3. Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., A Proof of Kolmogorov’s Theorem on Invariant Tori Using Canonical Transformations Defined by the Lie Method, Nuovo Cimento B Ser. 11, 1984, vol. 79, no. 2, pp. 201–223.

    Article  MathSciNet  Google Scholar 

  4. Celletti, A. and Chierchia, L., KAM Stability and Celestial Mechanics, Mem. Amer. Math. Soc., vol. 187, no. 878, Providence, R.I.: AMS, 2007.

    Google Scholar 

  5. Chierchia, L. and Falcolini, C., A Direct Proof of a Theorem by Kolmogorov in Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1994, vol. 21, no. 4, pp. 541–593.

    MathSciNet  MATH  Google Scholar 

  6. Chierchia, L. and Falcolini, C., Compensations in Small Divisor Problems, Comm. Math. Phys., 1996, vol. 175, no. 1, pp. 135–160.

    Article  MathSciNet  MATH  Google Scholar 

  7. Celletti, A., Giorgilli, A., and Locatelli, U., Improved Estimates on the Existence of Invariant Tori for Hamiltonian Systems, Nonlinearity, 2000, vol. 13, no. 2, pp. 397–412.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chierchia, L., Kolmogorov-Arnold-Moser (KAM) theory, in Encyclopedia of Complexity and Systems Science, R.A. Meyers (Ed.), New York: Springer, 2009, pp. 5064–5091.

    Chapter  Google Scholar 

  9. Dettman, J.W., Applied Complex Variables, New York: Dover, 1984.

    MATH  Google Scholar 

  10. Eliasson, L.H., Absolutely Convergent Series Expansions for Quasi Periodic Motions, Stockholm: Matem. Inst., Stockholm Univ., 1988.

    Google Scholar 

  11. Fortunati, A. and Wiggins, S., Normal Form and Nekhoroshev Stability for Nearly Integrable Hamiltonian Systems with Unconditionally Slow Aperiodic Time Dependence, Regul. Chaotic Dyn., 2014, vol. 19, no. 3, pp. 363–373.

    Article  MathSciNet  Google Scholar 

  12. Gallavotti, G., Twistless KAM Tori, Quasi Flat Homoclinic Intersections, and Other Cancellations in the Perturbation Series of Certain Completely Integrable Hamiltonian Systems: A Review, Rev. Math. Phys., 1994, vol. 6, no. 3, pp. 343–411.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gallavotti, G. and Gentile, G., Majorant Series Convergence for Twistless KAM Tori, Ergodic Theory Dynam. Systems, 1995, vol. 15, no. 5, pp. 857–869.

    Article  MathSciNet  Google Scholar 

  14. Giorgilli, A., Persistence of Invariant Tori, http://www.mat.unimi.it/users/antonio/hamsys/hamsys.html.

  15. Giorgilli, A., Notes on Exponential Stability of Hamiltonian Systems, in Dynamical Systems: Part 1. Hamiltonian Systems and Celestial Mechanics, Pisa: Centro di Recerca Matematica Ennio De Giorgi, Scuola Normale Superiore, 2002.

    Google Scholar 

  16. Giorgilli, A. and Locatelli, U., Kolmogorov Theorem and Classical Perturbation Theory, Z. Angew. Math. Phys., 1997, vol. 48, no. 2, pp. 220–261.

    Article  MathSciNet  MATH  Google Scholar 

  17. Giorgilli, A. and Locatelli, U., A Classical Self-Contained Proof of Kolmogorov’s Theorem on Invariant Tori, in Hamiltonian Systems with Three or More Degrees of Freedom (S’Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, Dordrecht: Kluwer Acad. Publ., 1999, pp. 72–89.

    Chapter  Google Scholar 

  18. Gentile, G. and Mastropietro, V., Tree Expansion and Multiscale Analysis for KAM Tori, Nonlinearity, 1995, vol. 8, no. 6, pp. 1159–1178.

    Article  MathSciNet  MATH  Google Scholar 

  19. Giorgilli, A. and Morbidelli, A., Invariant KAM Tori and Global Stability for Hamiltonian Systems, Z. Angew. Math. Phys., 1997, vol. 48, no. 1, pp. 102–134.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kolmogorov, A.N., On Conservation of Conditionally Periodic Motions for a Small Change in Hamilton’s Function, Dokl. Akad. Nauk SSSR (N. S.), 1954, vol. 98, pp. 527–530 (Russian); see also: Stochastic Behaviour in Classical and Quantum Hamiltonian Systems (Volta Memorial Conference, Como, 1977), G.Casati, J.Ford (Eds.), Lect. Notes Phys. Monogr., vol. 93, Berlin: Springer, 1979, pp. 51–56.

    MathSciNet  MATH  Google Scholar 

  21. Moser, J., On Invariant Curves of an Area Preserving Mappings of an Annulus, Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. II, 1962, vol. 25, pp. 1–20.

    Google Scholar 

  22. Moser, J., A Rapidly Convergent Iteration Method and Non-Linear Differential Equations: 1, Ann. Scuola Norm. Sup. Pisa (3), 1966, vol. 20, no. 2, pp. 265–315; Moser, J., A Rapidly Convergent Iteration Method and Non-Linear Differential Equations: 2, Ann. Scuola Norm. Sup. Pisa (3), 1966, vol. 20, no. 3, pp. 499–535.

    MathSciNet  MATH  Google Scholar 

  23. Moser, J., Convergent Series Expansions for Quasi-Periodic Motions, Math. Ann., 1967, vol. 169, pp. 136–176.

    Article  MathSciNet  MATH  Google Scholar 

  24. Zehnder, E., Generalized Implicit Function Theorems with Applications to Some Small Divisor Problems: 2, Comm. Pure Appl. Math., 1976, vol. 29, no. 1, pp. 49–111.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fortunati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortunati, A., Wiggins, S. Persistence of Diophantine flows for quadratic nearly integrable Hamiltonians under slowly decaying aperiodic time dependence. Regul. Chaot. Dyn. 19, 586–600 (2014). https://doi.org/10.1134/S1560354714050062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354714050062

MSC2010 numbers

Keywords

Navigation