Skip to main content
Log in

The Method of Averaging for the Kapitza – Whitney Pendulum

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

This article has been updated

Abstract

A generalization of the classical Kapitza pendulum is considered: an inverted planar mathematical pendulum with a vertically vibrating pivot point in a time-periodic horizontal force field. We study the existence of forced oscillations in the system. It is shown that there always exists a periodic solution along which the rod of the pendulum never becomes horizontal, i. e., the pendulum never falls, provided the period of vibration and the period of horizontal force are commensurable. We also present a sufficient condition for the existence of at least two different periodic solutions without falling. We show numerically that there exist stable periodic solutions without falling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 22 January 2021

    Changes in the attributes of the ImageObject (img) tag in the HTML file

References

  1. Stephenson, A., On Induced Stability, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (6), 1908, vol. 15, no. 86, pp. 233–236.

    Article  Google Scholar 

  2. Kapitza, P. L., Pendulum with a Vibrating Suspension, Usp. Fiz. Nauk, 1965, vol. 44, pp. 726–737 (Russian).

    Google Scholar 

  3. Kapitza, P. L., Dynamical Stability of a Pendulum When Its Point of Suspension Vibrates, Zh. Èksp. Teor. Fiz., 1965, vol. 21, no. 5, pp. 714–725 (Russian).

    Google Scholar 

  4. Bogolubov, N. N., Perturbation Theory in Nonlinear Mechanics, Sb. Tr. Inst. Stroit. Mekh. Akad. Nauk Ukr. SSR, 1950, no. 14, pp. 9–34 (Russian).

    Google Scholar 

  5. Acheson, D. J., Multiple-Nodding Oscillations of a Driven Inverted Pendulum, Proc. Roy. Soc. London Ser. A, 1995, vol. 448, no. 1932, pp. 89–95.

    MATH  Google Scholar 

  6. Burd, V., Method of Averaging for Differential Equations on an Infinite Interval: Theory and Applications, Boca Raton, Fla.: Chapman & Hall/CRC, 2007.

    Book  Google Scholar 

  7. Samoïlenko, A. M., N. N. Bogolyubov and Nonlinear Mechanics, Russian Math. Surveys, 1994, vol. 49, no. 5, pp. 109–154; see also: Uspekhi Mat. Nauk, 1994, vol. 49, no. 5(299), pp. 103-146.

    Article  MathSciNet  Google Scholar 

  8. Butikov, E. I., On the Dynamic Stabilization of an Inverted Pendulum, Am. J. Phys., 2001, vol. 69, no. 7, pp. 755–768.

    Article  Google Scholar 

  9. Wright, J. A., Bartuccelli, M., and Gentile, G., Comparisons between the Pendulum with Varying Length and the Pendulum with Oscillating Support, J. Math. Anal. Appl., 2017, vol. 449, no. 2, pp. 1684–1707.

    Article  MathSciNet  Google Scholar 

  10. Courant, R. and Robbins, H., What Is Mathematics? An Elementary Approach to Ideas and Methods, New York: Oxford Univ. Press, 1996.

    MATH  Google Scholar 

  11. Broman, A., A Mechanical Problem by H. Whitney, Nordisk Mat. Tidskr., 1958, vol. 6, pp. 78–82, 95–96.

    MathSciNet  MATH  Google Scholar 

  12. Polekhin, I. Yu., Examples of Topological Approach to the Problem of Inverted Pendulum with Moving Pivot Point, Nelin. Dinam., 2014, vol. 10, no. 4, pp. 465–472 (Russian).

    Article  MathSciNet  Google Scholar 

  13. Srzednicki, R., On Periodic Solutions in the Whitney’s Inverted Pendulum Problem, Discrete Contin. Dyn. Syst. Ser. S, 2019, vol. 12, no. 7, pp. 2127–2141.

    MathSciNet  MATH  Google Scholar 

  14. Bogolubov, N. N., On Some Statistical Methods in Mathematical Physics, Kiev: Akad. Nauk Ukr. SSR, 1945 (Russian).

    Google Scholar 

  15. Bogoliubov, N. N. and Mitropolsky, Yu. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, New York: Gordon & Breach, 1961.

    Google Scholar 

  16. De Coster, C. and Habets, P., Two-Point Boundary Value Problems: Lower and Upper Solutions, Amsterdam: Elsevier, 2006.

    MATH  Google Scholar 

  17. Bernfeld, S. R. and Lakshmikantham, V., An Introduction to Nonlinear Boundary Value Problems, New York: Acad. Press, 1974.

    MATH  Google Scholar 

  18. Sanders, J. A., Verhulst, F., and Murdock, J., Averaging Methods in Nonlinear Dynamical Systems, New York: Springer, 2007.

    Google Scholar 

  19. Cox, G. and Levi, M., The Ponderomotive Lorentz Force, Nonlinearity, 2020, vol. 33, no. 8, 4030, 15 pp.

    Article  MathSciNet  Google Scholar 

  20. Yang, Ch. and Khesin, B., Averaging, Symplectic Reduction, and Central Extensions, Nonlinearity, 2020, vol. 33, no. 3, 1342, 23 pp.

    Article  MathSciNet  Google Scholar 

  21. Polekhin, I., Forced Oscillations of a Massive Point on a Compact Surface with a Boundary, Nonlinear Anal. Theory Methods Appl., 2015, vol. 128, pp. 100–105.

    Article  MathSciNet  Google Scholar 

  22. Polekhin, I., On Forced Oscillations in Groups of Interacting Nonlinear Systems, Nonlinear Anal. Theory Methods Appl., 2016, vol. 135, pp. 120–128.

    Article  MathSciNet  Google Scholar 

  23. Polekhin, I., On the Impossibility of Global Stabilization of the Lagrange Top, Mech. Solids, 2018, vol. 53, pp. 71–75; see also: Prikl. Mat. Mekh., 2018, vol. 82, no. 5, pp. 599-604.

    Article  Google Scholar 

  24. Polekhin, I., On Topological Obstructions to Global Stabilization of an Inverted Pendulum, Syst. Control Lett., 2018, vol. 113, pp. 31–35.

    Article  MathSciNet  Google Scholar 

  25. Bolotin, S. V. and Kozlov, V. V., Calculus of Variations in the Large, Existence of Trajectories in Domains with Boundary, and Whitney’s Inverted Pendulum Problem, Izv. Math., 2015, vol. 79, no. 5, pp. 894–901; see also: Izv. Ross. Akad. Nauk Ser. Mat., 2015, vol. 79, no. 5, pp. 39-46.

    Article  MathSciNet  Google Scholar 

  26. Volosov, V. M., The Method of Averaging, Soviet Math. Dokl., 1961, vol. 2, pp. 221–224; see also: Dokl. Akad. Nauk SSSR, 1961, vol. 137, no. 1, pp. 21-24.

    MathSciNet  MATH  Google Scholar 

  27. Levenshtam, V. B., Asymptotic Integration of Differential Equations with Oscillatory Terms of Large Amplitudes: 1, Differ. Equ., 2005, vol. 41, no. 6, pp. 797–807; see also: Differ. Uravn., 2005, vol. 41, no. 6, pp. 761-770.

    Article  MathSciNet  Google Scholar 

  28. Levenshtam, V. B., Asymptotic Integration of Differential Equations with Oscillatory Terms of Large Amplitudes: 2, Differ. Equ., 2005, vol. 41, no. 8, pp. 1137–1145; see also: Differ. Uravn., 2005, vol. 41, no. 8, pp. 1084-1091.

    Article  MathSciNet  Google Scholar 

  29. Ważewski, T., Sur un principe topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math., 1947, vol. 20, pp. 279–313.

    MathSciNet  MATH  Google Scholar 

  30. Srzednicki, R., Periodic and Bounded Solutions in Blocks for Time-Periodic Nonautonomous Ordinary Differential Equations, Nonlinear Anal., 1994, vol. 22, no. 6, pp. 707–737.

    Article  MathSciNet  Google Scholar 

  31. Srzednicki, R., Wójcik, K., and Zgliczyński, P., Fixed Point Results Based on the Ważewski Method, in Handbook of Topological Fixed Point Theory, R. F. Brown, M. Furi, L. Górniewicz, B. Jiang (Eds.), Dordrecht: Springer, 2005, pp. 905–943.

    Chapter  Google Scholar 

Download references

Funding

This work has been supported by the Grant of the President of the Russian Federation (Project MK-1826.2020.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Yu. Polekhin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

34C29, 70K40

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polekhin, I.Y. The Method of Averaging for the Kapitza – Whitney Pendulum. Regul. Chaot. Dyn. 25, 401–410 (2020). https://doi.org/10.1134/S1560354720040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720040073

Keywords

Navigation