Skip to main content
Log in

Dynamics and Bifurcations on the Normally Hyperbolic Invariant Manifold of a Periodically Driven System with Rank-1 Saddle

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

This article has been updated

Abstract

In chemical reactions, trajectories typically turn from reactants to products when crossing a dividing surface close to the normally hyperbolic invariant manifold (NHIM) given by the intersection of the stable and unstable manifolds of a rank-1 saddle. Trajectories started exactly on the NHIM in principle never leave this manifold when propagated forward or backward in time. This still holds for driven systems when the NHIM itself becomes time-dependent. We investigate the dynamics on the NHIM for a periodically driven model system with two degrees of freedom by numerically stabilizing the motion. Using Poincaré surfaces of section, we demonstrate the occurrence of structural changes of the dynamics, viz., bifurcations of periodic transition state (TS) trajectories when changing the amplitude and frequency of the external driving. In particular, periodic TS trajectories with the same period as the external driving but significantly different parameters — such as mean energy — compared to the ordinary TS trajectory can be created in a saddle-node bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 22 January 2021

    Changes in the attributes of the ImageObject (img) tag in the HTML file

Notes

  1. Note that we use the phrase transition state to refer to the ensemble of states bound indefinitely to the saddle region, i. e., those located on the codimension-2 NHIM. This is distinct from the codimension-1 dividing surface. See footnote 6 of Reference [71] for a more detailed discussion.

References

  1. Bardakcioglu, R., Junginger, A., Feldmaier, M., Main, J., and Hernandez, R., Binary Contraction Method for the Construction of Time-Dependent Dividing Surfaces in Driven Chemical Reactions, Phys. Rev. E, 2018, vol. 98, no. 3, 032204, 8 pp.

    Google Scholar 

  2. Bartsch, Th., Hernandez, R., and Uzer, T., Transition State in a Noisy Environment, Phys. Rev. Lett., 2005, vol. 95, no. 5, 058301, 4 pp.

    Google Scholar 

  3. Bartsch, Th., Moix, J. M., Hernandez, R., Kawai, Sh., and Uzer, T., Time-Dependent Transition State Theory, Adv. Chem. Phys., 2008, vol. 140, pp. 191–238.

    Google Scholar 

  4. Bartsch, Th., Uzer, T., and Hernandez, R., Stochastic Transition States: Reaction Geometry amidst Noise, J. Chem. Phys., 2005, vol. 123, no. 20, 204102, 15 pp.

    Google Scholar 

  5. Bartsch, Th., Uzer, T., Moix, J. M., and Hernandez, R., Identifying Reactive Trajectories Using a Moving Transition State, J. Chem. Phys., 2006, vol. 124, no. 24, 244310, 14 pp.

    Google Scholar 

  6. Berne, B. J., Borkovec, M., and Straub, J. E., Classical and Modern Methods in Reaction Rate Theory, J. Phys. Chem., 1988, vol. 92, no. 13, pp. 3711–3725.

    Google Scholar 

  7. Craven, G. T., Bartsch, Th., and Hernandez, R., Communication: Transition State Trajectory Stability Determines Barrier Crossing Rates in Chemical Reactions Induced by Time-Dependent Oscillating Fields, J. Chem. Phys., 2014, vol. 141, no. 4, 041106, 5 pp.

    Google Scholar 

  8. Craven, G. T., Bartsch, Th., and Hernandez, R., Persistence of Transition State Structure in Chemical Reactions Driven by Fields Oscillating in Time, Phys. Rev. E, 2014, vol. 89, no. 4, 040801, 5 pp.

    Google Scholar 

  9. Craven, G. T., Bartsch, Th., and Hernandez, R., Chemical Reactions Induced by Oscillating External Fields in Weak Thermal Environments, J. Chem. Phys., 2015, vol. 142, no. 7, 074108, 15 pp.

    Google Scholar 

  10. Feldmaier, M., Bardakcioglu, R., Reiff, J., Main, J., and Hernandez, R., Phase-Space Resolved Rates in Driven Multidimensional Chemical Reactions, J. Chem. Phys., 2019, vol. 151, no. 24, 244108, 9 pp.

    Google Scholar 

  11. Feldmaier, M., Junginger, A., Main, J., Wunner, G., and Hernandez, R., Obtaining Time-Dependent Multi-Dimensional Dividing Surfaces Using Lagrangian Descriptors, Chem. Phys. Lett., 2017, vol. 687, pp. 194–199.

    Google Scholar 

  12. Feldmaier, M., Reiff, J., Benito, R. M., Borondo, F., Main, J., and Hernandez, R., Influence of External Driving on Decays in the Geometry of the LiCN Isomerization, J. Chem. Phys., 2020, vol. 153, no. 8, 084115, pp.

    Google Scholar 

  13. Feldmaier, M., Schraft, P., Bardakcioglu, R., Reiff, J., Lober, M., Tschöpe, M., Junginger, A., Main, J., Bartsch, Th., and Hernandez, R., Invariant Manifolds and Rate Constants in Driven Chemical Reactions, J. Phys. Chem. B, 2019, vol. 123, no. 9, pp. 2070–2086.

    Google Scholar 

  14. Garrett, B. C. and Truhlar, D. G., Generalized Transition State Theory, J. Phys. Chem., 1979, vol. 83, no. 8, pp. 1052–1079.

    Google Scholar 

  15. Haller, G., Uzer, T., Palacián, J., Yanguas, P., and Jaffé, C., Transition State Geometry near Higher-Rank Saddles in Phase Space, Nonlinearity, 2011, vol. 24, no. 2, pp. 527–561.

    MathSciNet  Google Scholar 

  16. Hänggi, P., Talkner, P., and Borkovec, M., Reaction-Rate Theory: Fifty Years after Kramers, Rev. Mod. Phys., 1990, vol. 62, no. 2, pp. 251–341, and references therein.

    MathSciNet  Google Scholar 

  17. Hernandez, R., Bartsch, Th., and Uzer, T., Transition State Theory in Liquids beyond Planar Dividing Surfaces, Chem. Phys., 2010, vol. 370, no. 1–3, pp. 270–276.

    Google Scholar 

  18. Huepe, C., Métens, S., Dewel, G., Borckmans, P., and Brachet, M. E., Decay Rates in Attractive Bose – Einstein Condensates, Phys. Rev. Lett., 1999, vol. 82, no. 8, pp. 1616–1619.

    Google Scholar 

  19. Huepe, C., Tuckerman, L. S., Métens, S., and Brachet, M. E., Stability and Decay Rates of Nonisotropic Attractive Bose – Einstein Condensates, Phys. Rev. A, 2003, vol. 68, no. 2, 023609, 13 pp.

    Google Scholar 

  20. Hynes, J. T., Chemical Reaction Dynamics in Solution, Annu. Rev. Phys. Chem., 1985, vol. 36, pp. 573–597.

    Google Scholar 

  21. Jacucci, G., Toller, M., DeLorenzi, G., and Flynn, C. P., Rate Theory, Return Jump Catastrophes, and the Center Manifold, Phys. Rev. Lett., 1984, vol. 52, no. 4, pp. 295–298.

    MathSciNet  Google Scholar 

  22. Jaffé, C., Farrelly, D., and Uzer, T., Transition State Theory without Time-Reversal Symmetry: Chaotic Ionization of the Hydrogen Atom, Phys. Rev. Lett., 2000, vol. 84, no. 4, pp. 610–613.

    Google Scholar 

  23. Jaffé, C., Ross, S. D., Lo, M. W., Marsden, J., Farrelly, D., and Uzer, T., Statistical Theory of Asteroid Escape Rates, Phys. Rev. Lett., 2002, vol. 89, no. 1, 011101, 4 pp.

    Google Scholar 

  24. Junginger, A., Craven, G. T., Bartsch, Th., Revuelta, F., Borondo, F., Benito, R. M., and Hernandez, R., Transition State Geometry of Driven Chemical Reactions on Time-Dependent Double-Well Potentials, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 44, pp. 30270–30281.

    Google Scholar 

  25. Junginger, A., Dorwarth, M., Main, J., and Wunner, G., Transition State Theory for Wave Packet Dynamics: 2. Thermal Decay of Bose – Einstein Condensates with Long-Range Interaction, J. Phys. A, 2012, vol. 45, no. 15, 155202, 12 pp.

    MathSciNet  Google Scholar 

  26. Junginger, A. and Hernandez, R., Lagrangian Descriptors in Dissipative Systems, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 44, pp. 30282–30287.

    Google Scholar 

  27. Junginger, A. and Hernandez, R., Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors, J. Phys. Chem. B, 2016, vol. 120, no. 8, pp. 1720-1725.

    Google Scholar 

  28. Junginger, A., Kreibich, M., Main, J., and Wunner, G., Transition States and Thermal Collapse of Dipolar Bose – Einstein Condensates, Phys. Rev. A, 2013, vol. 88, no. 4, 043617, 9 pp.

    Google Scholar 

  29. Junginger, A., Main, J., Wunner, G., and Dorwarth, M., Transition State Theory for Wave Packet Dynamics: 1. Thermal Decay in Metastable Schrödinger Systems, J. Phys. A, 2012, vol. 45, no. 15, 155201, 18 pp.

    MathSciNet  Google Scholar 

  30. Kawai, S. and Komatsuzaki, T., Dynamic Pathways to Mediate Reactions Buried in Thermal Fluctuations: 1. Time-Dependent Normal Form Theory for Multidimensional Langevin Equation, J. Chem. Phys., 2009, vol. 131, no. 22, 224505, 11 pp.

    Google Scholar 

  31. Kawai, S. and Komatsuzaki, T., Robust Existence of a Reaction Boundary to Separate the Fate of a Chemical Reaction, Phys. Rev. Lett., 2010, vol. 105, no. 4, 048304, 4 pp.

    Google Scholar 

  32. Kawai, S., Teramoto, H., Li, C.-B., Komatsuzaki, T., and Toda, M., Dynamical Reaction Theory Based on Geometric Structures in Phase Space, Adv. Chem. Phys., 2011, vol. 145, pp. 123–169.

    Google Scholar 

  33. Komatsuzaki, T. and Berry, R. S., Regularity in Chaotic Reaction Paths: 1 \({\rm Ar}_{6}\), J. Chem. Phys., 1999, vol. 110, no. 18, pp. 9160–9173.

    Google Scholar 

  34. Komatsuzaki, T. and Berry, R. S., Dynamical Hierarchy in Transition States: Why and How Does a System Climb over the Mountain?, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, no. 14, pp. 7666–7671.

    Google Scholar 

  35. Komatsuzaki, T. and Berry, R. S., Chemical Reaction Dynamics: Many-Body Chaos and Regularity, Adv. Chem. Phys., 2002, vol. 123, pp. 79–152.

    Google Scholar 

  36. Li, C.-B., Shoujiguchi, A., Toda, M., and Komatsuzaki, T., Definability of No-Return Transition States in the High-Energy Regime above the Reaction Threshold, Phys. Rev. Lett., 2006, vol. 97, no. 2, 028302, 4 pp.

    Google Scholar 

  37. Li, C.-B., Toda, M., and Komatsuzaki, T., Bifurcation of No-Return Transition States in Many-Body Chemical Reactions, J. Chem. Phys., 2009, vol. 130, no. 12, 124116, pp.

    Google Scholar 

  38. Lichtenberg, A. J. and Lieberman, M. A., Regular and Chaotic Dynamics, New York: Springer, 1992.

    Google Scholar 

  39. Mancho, A. M., Wiggins, S., Curbelo, J., and Mendoza, C., Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems, Commun. Nonlinear Sci. Numer. Simul., 2013, vol. 18, no. 12, pp. 3530–3557.

    MathSciNet  Google Scholar 

  40. Mendoza, C. and Mancho, A. M., Hidden Geometry of Ocean Flows, Phys. Rev. Lett., 2010, vol. 105, no. 3, 038501, 4 pp.

    Google Scholar 

  41. Murgida, G. E., Arranz, F. J., and Borondo, F., Quantum Control of Isomerization by Robust Navigation in the Energy Spectrum, J. Chem. Phys., 2015, vol. 143, no. 21, 214305, 10 pp.

    Google Scholar 

  42. Murgida, G. E., Wisniacki, D. A., Tamborenea, P. I., and Borondo, F., Control of Chemical Reactions Using External Electric Fields: The Case of the LiNC\(\rightleftharpoons\)LiCN Isomerization, Chem. Phys. Lett., 2010, vol. 496, no. 4–6, pp. 356–361.

    Google Scholar 

  43. Natanson, G. A., Garrett, B. C., Truong, T. N., Joseph, T., and Truhlar, D. G., The Definition of Reaction Coordinates for Reaction-Path Dynamics, J. Chem. Phys., 1991, vol. 94, no. 12, pp. 7875–7892.

    Google Scholar 

  44. Nitzan, A., Activated Rate Processes in Condensed Phases: The Kramers Theory Revisited, Adv. Chem. Phys., 1988, vol. 70, pp. 489–555.

    Google Scholar 

  45. de Oliveira, H. P., Ozorio de Almeida, A. M., Damiao Soares, I., and Tonini, E. V., Homoclinic Chaos in the Dynamics of a General Bianchi Type-IX Model, Phys. Rev. D (3), 2002, vol. 65, no. 8, 083511, 9 pp.

    MathSciNet  Google Scholar 

  46. Pechukas, P., Transition State Theory, Annu. Rev. Phys. Chem., 1981, vol. 32, pp. 159–177.

    Google Scholar 

  47. Pechukas, P. and Pollak, E., Trapped Trajectories at the Boundary of Reactivity Bands in Molecular Collisions, J. Chem. Phys., 1977, vol. 67, no. 12, pp. 5976–5977.

    Google Scholar 

  48. The Transition State: Proc. of the Symposium (Sheffield, UK, April 1962), Sheffield: Sheffield Univ., Chem. Soc., 1962.

  49. Pollak, E., Child, M. S., and Pechukas, P., Classical Transition State Theory: A Lower Bound to the Reaction Probability, J. Chem. Phys., 1980, vol. 72, no. 3, pp. 1669–1678.

    MathSciNet  Google Scholar 

  50. Pollak, E. and Pechukas, P., Transition States, Trapped Trajectories, and Classical Bound States Embedded in the Continuum, J. Chem. Phys., 1978, vol. 69, no. 3, pp. 1218–1226.

    Google Scholar 

  51. Pollak, E. and Talkner, P., Reaction Rate Theory: What It Was, Where Is It Today, and Where Is It Going?, Chaos, 2005, vol. 15, no. 2, 026116, 11 pp.

    MathSciNet  Google Scholar 

  52. Reiff, J., Feldmaier, M., Main, J., and Hernandez, R., Dynamics and Decay Rates of a Time-Dependent Two-Saddle System, submitted to Phys. Rev. E (2020).

  53. Revuelta, F., Chacón, R., and Borondo, F., Towards AC-Induced Optimum Control of Dynamical Localization, Europhys. Lett., 2015, vol. 110, no. 4, 40007, 6 pp.

    Google Scholar 

  54. Revuelta, F., Craven, G. T., Bartsch, Th., Borondo, F., Benito, R. M., and Hernandez, R., Transition State Theory for Activated Systems with Driven Anharmonic Barriers, J. Chem. Phys., 2017, vol. 147, no. 7, 074104, 12 pp.

    Google Scholar 

  55. Schuster, H. G. and Just, W., Deterministic Chaos: An Introduction, Weinheim: Wiley-VCH, 2005.

    Google Scholar 

  56. Sharia, O. and Henkelman, G., Analytic Dynamical Corrections to Transition State Theory, New J. Phys., 2016, vol. 18, no. 1, 013023, 11 pp.

    Google Scholar 

  57. Shukla, A. and Keshavamurthy, S., One Versus Two Photon Control of Dynamical Tunneling: Influence of the Irregular Floquet States, J. Phys. Chem. B, 2015, vol. 119, no. 34, pp. 11326–11335.

    Google Scholar 

  58. Talkner, P., Hershkovitz, E., Pollak, E., and Hänggi, P., Controlling Activated Surface Diffusion by External Fields, Surf. Sci., 1999, vol. 437, no. 1–2, pp. 198–206.

    Google Scholar 

  59. Teramoto, H., Haller, G., and Komatsuzaki, T., Detecting Invariant Manifolds As Stationary Lagrangian Coherent Structures in Autonomous Dynamical Systems, Chaos, 2013, vol. 23, no. 4, 043107, 12 pp.

    MathSciNet  Google Scholar 

  60. Teramoto, H., Toda, M., and Komatsuzaki, T., Dynamical Switching of a Reaction Coordinate to Carry the System through to a Different Product State at High Energies, Phys. Rev. Lett., 2011, vol. 106, no. 5, 054101, 4 pp.

    Google Scholar 

  61. Teramoto, H., Toda, M., and Komatsuzaki, T., Breakdown Mechanisms of Normally Hyperbolic Invariant Manifolds in Terms of Unstable Periodic Orbits and Homoclinic/Heteroclinic Orbits in Hamiltonian Systems, Nonlinearity, 2015, vol. 28, no. 8, pp. 2677–2698.

    MathSciNet  Google Scholar 

  62. Teramoto, H., Toda, M., Takahashi, M., Kono, H., and Komatsuzaki, T., Mechanism and Experimental Observability of Global Switching between Reactive and Nonreactive Coordinates at High Total Energies, Phys. Rev. Lett., 2015, vol. 115, no. 9, 093003, 5 pp.

    Google Scholar 

  63. Toller, M., Jacucci, G., DeLorenzi, G., and Flynn, C. P., Theory of Classical Diffusion Jumps in Solids, Phys. Rev. B, 1985, vol. 32, no. 4, pp. 2082–2095.

    Google Scholar 

  64. Truhlar, D. G. and Garrett, B. C., Multidimensional Transition State Theory and the Validity of Grote – Hynes Theory, J. Phys. Chem. B, 2000, vol. 104, no. 5, pp. 1069–1072.

    Google Scholar 

  65. Truhlar, D. G., Garrett, B. C., and Klippenstein, S. J., Current Status of Transition-State Theory, J. Phys. Chem., 1996, vol. 100, pp. 12771–12800.

    Google Scholar 

  66. Truhlar, D. G., Issacson, A. D., and Garrett, B. C., Generalized Transition State Theory, in Theory of Chemical Reaction Dynamics: Vol. 4, Boca Raton, Fla.: CRC, 1985, pp. 65–137.

    Google Scholar 

  67. Tschöpe, M., Feldmaier, M., Main, J., and Hernandez, R., Neural Network Approach for the Dynamics on the Normally Hyperbolic Invariant Manifold of Periodically Driven Systems, Phys. Rev. E, 2020, vol. 101, no. 2, 022219, 9 pp.

    MathSciNet  Google Scholar 

  68. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 2020, vol. 17, pp. 261–272.

    Google Scholar 

  69. Voter, A. F., Montalenti, F., and Germann, T. C., Extending the Time Scale in Atomistic Simulations of Materials, Annu. Rev. Mater. Res., 2002, vol. 32, pp. 321–346.

    Google Scholar 

  70. Waalkens, H., Burbanks, A., and Wiggins, S., Escape from Planetary Neighborhoods, Mon. Not. R. Astron. Soc., 2005, vol. 361, no. 3, pp. 763–775.

    Google Scholar 

  71. Waalkens, H., Schubert, R., and Wiggins, S., Wigner’s Dynamical Transition State Theory in Phase Space: Classical and Quantum, Nonlinearity, 2008, vol. 21, no. 1, pp. R1–R118.

    MathSciNet  Google Scholar 

  72. Wiggins, S., Normally Hyperbolic Invariant Manifolds in Dynamical Systems, New York: Springer, 1994.

    Google Scholar 

  73. Wimberger, S., Nonlinear Dynamics and Quantum Chaos: An Introduction, Cham: Springer, 2014.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Tobias Mielich, Robin Bardakcioglu, and Matthias Feldmaier for fruitful discussions.

Funding

The German portion of this collaborative work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) through Grant No. MA1639/14-1. The US portion was partially supported by the National Science Foundation (NSF) through Grant No. CHE 1700749. This collaboration has also benefited from support by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant Agreement No. 734557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigoberto Hernandez.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

37D05, 37G15, 37J20, 37M05, 65P30

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchelmeister, M., Reiff, J., Main, J. et al. Dynamics and Bifurcations on the Normally Hyperbolic Invariant Manifold of a Periodically Driven System with Rank-1 Saddle. Regul. Chaot. Dyn. 25, 496–507 (2020). https://doi.org/10.1134/S1560354720050068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720050068

Keywords

Navigation