Skip to main content
Log in

Highly Dispersive Optical Solitons of an Equation with Arbitrary Refractive Index

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

A nonlinear fourth-order differential equation with arbitrary refractive index for description of the pulse propagation in an optical fiber is considered. The Cauchy problem for this equation cannot be solved by the inverse scattering transform and we look for solutions of the equation using the traveling wave reduction. We present a novel method for finding soliton solutions of nonlinear evolution equations. The essence of this method is based on the hypothesis about the possible type of an auxiliary equation with an already known solution. This new auxiliary equation is used as a basic equation to look for soliton solutions of the original equation. We have found three forms of soliton solutions of the equation at some constraints on parameters of the equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Das, A., Biswas, A., Ekici, M., Zhou, Q., Alshomrant, A., and Belic, M. R., Optical Solitons with Complex Ginzburg – Landau Equation for Two Nonlinear Forms Using \(F\)-Expansion, Chinese J. Phys., 2019, vol. 61, pp. 255–261.

    MathSciNet  Google Scholar 

  2. Yan, Y., Liu, W., Zhou, Q., and Biswas, A., Dromion-Like Structures and Periodic Wave Solutions for Variable-Coefficients Complex Cubic-Quintic Ginzburg – Landau Equation Influenced by Higher-Order Effects and Nonlinear Gain, Nonlinear Dyn., 2020, vol. 99, no. 2, pp. 1313–1319.

    Google Scholar 

  3. Zayed, E. M. E., Alngar, M. E. M., El-Horbaty, M., Biswas, A., Alshomrani, A. S., Ekisi, M., Yildirim, Y., and Belic, M. R., Optical Solitons with Complex Ginzburg – Landau Equation Having a Plethora of Nonlinear Forms with a Couple of Improved Integration Norms, Optik, 2020, vol. 207, 163804, pp.

    Google Scholar 

  4. Kudryashov, N. A., First Integrals and General Solution of the Complex Ginzburg – Landau Equation, Appl. Math. Comput., 2020, vol. 386, 125407, 9 pp.

    MathSciNet  Google Scholar 

  5. Biswas, A., 1-Soliton Solution of the Generalized Radhakrishnan, Kundu, Laksmanan Equation, Phys. Lett. A, 2009, vol. 373, no. 30, pp. 2546–2548.

    MathSciNet  MATH  Google Scholar 

  6. Zhang, J., Li, Sh., and Geng, H., Bifurcations of Exact Travelling Wave Solutions for the Generalized R –K – L Equation, J. Appl. Anal. Comput., 2016, vol. 6, no. 4, pp. 1205–1210.

    MathSciNet  MATH  Google Scholar 

  7. Biswas, A., Optical Soliton Perturbation with Radhakrishnan – Kundu – Laksmanan Equation by Traveling Wave Hypothesis, Optik, 2018, vol. 171, pp. 217–220.

    Google Scholar 

  8. Kudryashov, N. A., Safonova, D. V., and Biswas, A., Painlevé Analysis and a Solution to the Traveling Wave Reduction of the Radhakrishnan – Kundu – Lakshmanan Equation, Regul. Chaotic Dyn., 2019, vol. 24, no. 6, pp. 607–614.

    MathSciNet  MATH  Google Scholar 

  9. Christian, J. M., McDonald, G. S., and Kotsampaseris, A., Relativistic and Pseudorelativistic Formulation of Nonlinear Envelope Equations with Spatiotemporal Dispersion: 1. Cubic-Quintic Systems, Phys. Rev. A, 2018, vol. 98, no. 5, 053842, 17 pp.

    Google Scholar 

  10. Xie, Y., Yang, Zh., and Li, L., New Exact Solutions to the High Dispersive Cubic-Quintic Nonlinear Schrödinger Equation, Phys. Lett. A, 2018, vol. 382, no. 36, pp. 2506–2514.

    MathSciNet  MATH  Google Scholar 

  11. Wang, C.-Y., The Analytic Solutions of Schrödinger Equation with Cubic-Quintic Nonlinearities, Results Phys., 2019, vol. 10, pp. 150–154.

    Google Scholar 

  12. Kudryashov, N. A., Traveling Wave Solutions of the Generalized Nonlinear Schrödinger Equation with Cubic-Quintic Nonlinearity, Optik, 2019, vol. 188, pp. 27–35.

    Google Scholar 

  13. Triki, H. and Biswas, A., Sub Pico-Second Chirped Envelope Solitons and Conservation Laws in Monomode Optical Fibers for a New Derivative Nonlinear Schrödinger’s Model, Optik, 2019, vol. 173, pp. 235–241.

    Google Scholar 

  14. Zhou, Q., Ekici, M., and Sonmezoglu, A., Exact Chirped Singular Soliton Solutions of Triki – Biswas Equation, Optik, 2019, vol. 181, pp. 338–342.

    Google Scholar 

  15. Kudryashov, N. A., First Integrals and Solutions of the Traveling Wave Reduction for the Triki – Biswas Equation, Optik, 2019, vol. 185, pp. 275–281.

    Google Scholar 

  16. Kundu, A., Mukherjee, A., and Naskar, T., Modeling Rogue Waves through Exact Dynamical Lamps Soliton Controlled by Ocean Currents, Proc. Roy. Soc. London Ser. A, 2014, vol. 470, no. 2164, 20130576, 20 pp.

    MATH  Google Scholar 

  17. Ekici, M., Sonmezoglu, A., Biswas, A., and Belic, M. R., Optical Soltons in \((2+1)\)-Dimension with Kundu – Mukherjee – Naskar Equation by Extended Trial Function Scheme, Chinese J. Phys., 2019, vol. 57, pp. 72–77.

    Google Scholar 

  18. Yildirim, Y., Optical Soltons to Kundu – Mukherjee – Naskar Model with Modified Simple Equation Approach, Optik, 2019, vol. 184, pp. 247–252.

    Google Scholar 

  19. Kudryashov, N. A., General Solution of Traveling Wave Reduction for the Kundu – Mukherjee – Naskar Equation, Optik, 2019, vol. 186, pp. 22–27.

    Google Scholar 

  20. Lenells, J. and Fokas, A. S., An Integrable Generalization of the Nonlinear Schrödinger Equation on the Half-Line and Solitons, Inverse Problems, 2009, vol. 25, no. 11, 115006, 32 pp.

    MathSciNet  MATH  Google Scholar 

  21. Biswas, A., Yildirim, Y., Yasar, E., Zhou, Q., Moshokoa, S. P., and Belic, M., Optical Soliton Solutions to Focas – Lenells Equation Using Some Different Methods, Optik, 2018, vol. 173, pp. 21–31.

    Google Scholar 

  22. Krishnan, E. V., Biswas, A., Zhou, Q., and Alfiras, M., Optical Soliton Perturbation with Focas – Lenells Equation by Mapping Methods, Optik, 2019, vol. 178, pp. 104–110.

    Google Scholar 

  23. Kudryashov, N. A., First Integrals and General Solution of the Fokas – Lenells Equation, Optik, 2019, vol. 195, 163135, pp.

    Google Scholar 

  24. Triki, H., Babatin, M. M., and Biswas, A., Chirped Bright Solitons for Chen – Lee – Liu Equation in Optical Fibers and PCF, Optik, 2018, vol. 149, pp. 300–303.

    Google Scholar 

  25. Triki, H., Zhou, Q., Moshokoac, S. P., Ullahd, M. Z., Biswas, A., and Belic, M., Chirped \(w\)-Shaped Optical Solitons of Chen – Lee – Liu Equation, Optik, 2018, vol. 155, pp. 208–212.

    Google Scholar 

  26. Triki, H., Hamaizia, Y., Zhou, Q., Biswas, A., Ullahd, M. Z., Moshokoae, S. P., and Belic, M., Chirped Dark and Gray Solitons for Chen – Lee – Liu Equation in Optical Fibers and PCF, Optik, 2018, vol. 155, pp. 329–333.

    Google Scholar 

  27. Kudryashov, N. A., General Solution of the Traveling Wave Reduction for the Perturbed Chen – Lee – Liu Equation, Optik, 2019, vol. 186, pp. 339–349.

    Google Scholar 

  28. Biswas, A. and Milovic, D., Bright and Dark Solitons of the Generalized Nonlinear Schrödinger’s Equation, Commun. Nonlinear Sci. Numer. Simul., 2010, vol. 15, no. 6, pp. 1473–1484.

    MathSciNet  MATH  Google Scholar 

  29. Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., and Eslami, M., Analytical Study of Solitons to Biswas – Milovic Model in Nonlinear Optics, J. Mod. Opt., 2016, vol. 63, no. 21, pp. 2131–2137.

    Google Scholar 

  30. Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., and Eslami, M., Optical Solitons with Biswas – Milovic Equation by Extended Trial Equation Method, Nonlinear Dyn., 2016, vol. 84, no. 4, pp. 1883–1900.

    MathSciNet  MATH  Google Scholar 

  31. Kudryashov, N. A., First Integrals and General Solutions of the Biswas – Milovic Equation, Optik, 2020, vol. 210, 164490, pp.

    Google Scholar 

  32. Gerdjikov, V. S. and Ivanov, M. I., Expansions over the Squared Solutions and Inhomgeneous Nonlinear Schrödinger Equation, Inverse Problems, 1992, vol. 8, no. 6, pp. 831–847.

    MathSciNet  MATH  Google Scholar 

  33. Guo, L., Zhang, Y., Xu, Sh., Wu, Zh., and He, J., The Higher Order Rogue Wave Solutions of the Gerdjikov – Ivanov Equation, Phys. Scr., 2014, vol. 89, no. 3, 035501, 11 pp.

    Google Scholar 

  34. Zhang, J. B., Gongye, Y. Y., and Chen, S. T., Soliton Solutions to the Coupled Gerdjikov – Ivanov Equation with Rogue-Wave-Like Phenomena, Chin. Phys. Lett., 2017, vol. 34, no. 9, 090201, 5 pp.

    Google Scholar 

  35. Kudryashov, N. A., Traveling Wave Solutions of the Generalized Gerdjikov – Ivanov Equation, Optik, 2020, vol. 219, 165193, pp.

    Google Scholar 

  36. Kudryashov, N. A., A Generalized Model for Description of Propagation Pulses in Optical Fiber, Optik, 2019, vol. 189, pp. 42–52.

    Google Scholar 

  37. Zayed, E. M. E., Alngar, M. E. M., Biswas, A., Asma, M., Ekici, M., Alzahrani, A. K., and Belic, M. R., Solitons in Magneto-Optic Waveguides with Kudryashov’s Law of Tefractive Index, Chaos Solitons Fractals, 2020, vol. 140, 110129, pp.

    MathSciNet  Google Scholar 

  38. Zayed, E. M. E. and Alngar, M. E. M., Optical Soliton Solutions for the Generalized Kudryashov Equation of Propagation Pulse in Optical Fiber with Power Nonlinearities by Three Integration Algorithms, Math. Methods Appl. Sci., 2020, pp. 10).

  39. Zayed, E. M. E., Alngar, M. E. M., Biswas, A., Ekici, M., Alzahrani, A. K., and Belic, M. R., Chirper and Chirp Free Optical Solitons in Fiber Dragg Gratings with Kudryashov’s Model in Presence of Despersive Reflectivity, J. Commun. Technol. El., 2020 (in press).

  40. Yildirim, Y., Biswas, A., Ekici, M., Zayed, E. M. E., Alzahrani, A. K., and Belic, M. R., Optical Soliton Perturbation, with Maximum Intensity, Having Generalized Kudryashov’s Law of Refractive Index, Optik, 2020 (in press).

  41. Zayed, E. M. E., Shohib, R. M. A., Biswas, A., Ekici, M., Triki, H., Alzahrani, A. K., and Belic, M. R., Optical Solitons and Other Solutions to Kudryashov’s Equation with Three Innovative Integration Norms, Optik, 2020, vol. 211, 164431, pp.

    Google Scholar 

  42. Biswas, A. and Arshed, S., Optical Solitons in Presence of Higher Order Dispersion and Absence of Self-Phase Modulation, Optik, 2018, vol. 184, pp. 452–459.

    Google Scholar 

  43. Das, P. K., The Rapidly Convergent Approximation Method to Solve System of Equations and Its Application to the Biswas – Arshed Equation, Optik, 2019, vol. 195, 163134, pp.

    Google Scholar 

  44. Rehman, H. U., Saleem, M. S., Zubair, M., Jafar, S., and Latif, I., Optical Solitons with Biswas – Arshed Model Using Mapping Method, Optik, 2019, vol. 194, 163091, pp.

    Google Scholar 

  45. Kudryashov, N. A., Solitary Wave Solutions of the Generalized Biswas – Arshed Equation, Optik, 2020, vol. 219, 165002, pp.

    Google Scholar 

  46. Kudryashov, N. A., Solitary Wave Solutions of Hierarchy with Non-Local Nonlinearity, Appl. Math. Lett., 2020, vol. 103, 106155, pp.

    MathSciNet  MATH  Google Scholar 

  47. Kudryashov, N. A., Construction of Nonlinear Equations for Description of Propagation Pulses in Optical Fiber, Optik, 2019, vol. 192, 162964, pp.

    Google Scholar 

  48. Biswas, A., Ekici, M., Sonmezoglu, A., and Belic, M. R., Highly Dispersive Optical Soliton with Non-Local Nonlinearity by \(F\)-Expansion, Optik, 2019, vol. 183, pp. 1140–1150.

    Google Scholar 

  49. Biswas, A., Ekici, M., Sonmezoglu, A., and Belic, M. R., Highly Dispersive Optical Soliton with Non-Local Nonlinearity by Extended Jacobi’s Elliptic Function Expansion, Optik, 2019, vol. 184, pp. 277–286.

    Google Scholar 

  50. Kudryashov, N. A., Method for Finding Highly Dispersive Optical Solitons of Nonlinear Differential Equations, Optik, 2020, vol. 206, 163550, pp.

    Google Scholar 

  51. Kudryashov, N. A., Mathematical Model of Propagation Pulse in Optical Fiber with Power Nonlinearities, Optik, 2020, vol. 212, 164750, pp.

    Google Scholar 

  52. Kudryashov, N. A. and Antonova, E. V., Solitary Waves of Equation for Propagation Pulse with Power Nonlinearities, Optik, 2020, vol. 217, 164881, pp.

    Google Scholar 

  53. Kudryashov, N. A., Simplest Equation Method to Look for Exact Solutions of Nonlinear Differential Equations, Chaos Solitons Fractals, 2005, vol. 24, no. 5, pp. 1217–1231.

    MathSciNet  MATH  Google Scholar 

  54. Kudryashov, N. A., Exact Solutions of the Equation for Surface Waves in a Convecting Fluid, Appl. Math. Comput., 2019, vol. 344/345, pp. 97–106.

    MathSciNet  MATH  Google Scholar 

  55. Kudryashov, N. A., Logistic Function As Solution of Many Nonlinear Differential Equations, Appl. Math. Model., 2015, vol. 39, no. 18, pp. 5733–5742.

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This research was supported by the Russian Foundation for Basic Research according to the research project No. 18-29-10025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay A. Kudryashov.

Ethics declarations

The authors have no conflict of interest.

Additional information

MSC2010

34M55

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, N.A. Highly Dispersive Optical Solitons of an Equation with Arbitrary Refractive Index. Regul. Chaot. Dyn. 25, 537–543 (2020). https://doi.org/10.1134/S1560354720060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720060039

Keywords

Navigation