Skip to main content
Log in

Quantifying the Transition from Spiral Waves to Spiral Wave Chimeras in a Lattice of Self-sustained Oscillators

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The present work is devoted to the detailed quantification of the transition from spiral waves to spiral wave chimeras in a network of self-sustained oscillators with two-dimensional geometry. The basic elements of the network under consideration are the van der Pol oscillator or the FitzHugh – Nagumo neuron. Both of the models are in the regime of relaxation oscillations. We analyze the regime by using the indices of local sensitivity, which enables us to evaluate the sensitivity of each oscillator at a finite time. Spiral waves are observed in both lattices when the interaction between elements has a local character. The dynamics of all the elements is regular. There are no pronounced high-sensitive regions. We have discovered that, when the coupling becomes nonlocal, the features of the system change significantly. The oscillation regime of the spiral wave center element switches to a chaotic one. Besides, a region with high sensitivity occurs around the wave center oscillator. Moreover, we show that the latter expands in space with elongation of the coupling range. As a result, an incoherence cluster of the spiral wave chimera is formed exactly within this high-sensitive area. A sharp increase in the values of the maximal Lyapunov exponent in the positive region leads to the formation of the incoherence cluster. Furthermore, we find that the system can even switch to a hyperchaotic regime when several Lyapunov exponents become positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kopell, N. and Howard, L. N., Plane Wave Solutions to Reaction-Diffusion Equations, Stud. Appl. Math., 1973, vol. 52, no. 4, pp. 291–328.

    MathSciNet  MATH  Google Scholar 

  2. Winfree, A. T., Rotating Chemical Reaction, Sci. Am., 1974, vol. 230, no. 6, pp. 82–95.

    Google Scholar 

  3. Hagan, P. S., Spiral Waves in Reaction-Diffusion Equations, SIAM J. Appl. Math., 1982, vol. 42, no. 4, pp. 762–786.

    MathSciNet  MATH  Google Scholar 

  4. Keener, J. P. and Tyson, J. J., Spiral Waves in the Belousov – Zhabotinskii Reaction, Phys. D, 1986, vol. 21, no. 2–3, pp. 307–324.

    MathSciNet  MATH  Google Scholar 

  5. Biktashev, V. N., Diffusion of Autowaves: Evolution Equation for Slowly Varying Autowaves, Phys. D, 1989, vol. 40, no. 1, pp. 83–90.

    MathSciNet  MATH  Google Scholar 

  6. Barkley, D., Kness, M., and Tuckerman, L. S., Spiral-Wave Dynamics in a Simple Model of Excitable Media: The Transition from Simple to Compound Rotation, Phys. Rev. A, 1990, vol. 42, no. 4, pp. 2489–2492.

    MathSciNet  Google Scholar 

  7. Ermakova, E. A., Panteleev, M. A., and Shnol, E. E., Blood Coagulation and Propagation of Autowaves in Flow, Pathophysiol. Haemos. Thromb., 2005, vol. 34, no. 2–3, pp. 135–142.

    Google Scholar 

  8. Kuramoto, Y. and Shima, S.-I., Rotating Spirals without Phase Singularity in Reaction-Diffusion Systems, Prog. Theor. Phys., Suppl., 2003, no. 150, pp. 115–125.

    MathSciNet  Google Scholar 

  9. Zhang, H., Ruan, X.-S., Hu, B., and Ouyang, Q., Spiral Breakup due to Mechanical Deformation in Excitable Media, Phys. Rev. E, 2004, vol. 70, no. 1, 016212, 5 pp.

    Google Scholar 

  10. Martens, E. A., Laing, C. R., and Strogatz, S. H., Solvable Model of Spiral Wave Chimeras, Phys. Rev. Lett., 2010, vol. 104, no. 4, 044101, 4 pp.

    Google Scholar 

  11. Kuz’min, Yu. O., Deformation Autowaves in Fault Zones, Izv., Phys. Solid Earth, 2012, vol. 48, no. 1, pp. 1–16; see also: Fiz. Zemli, 2012, vol. , no. 1, pp. 3-19.

    Google Scholar 

  12. Tang, X., Yang, T., Epstein, I. R., Liu, Y., Zhao, Y. and Gao, Q., Novel Type of Chimera Spiral Waves Arising from Decoupling of a Diffusible Component, J. Chem. Phys., 2014, vol. 141, no. 2, 024110, 7 pp.

    Google Scholar 

  13. Panaggio, M. J. and Abrams, D. M., Chimera States on the Surface of a Sphere, Phys. Rev. E (3), 2015, vol. 91, no. 2, 022909, 10 pp.

    MathSciNet  Google Scholar 

  14. Li, B.-W. and Dierckx, H., Spiral Wave Chimeras in Locally Coupled Oscillator Systems, Phys. Rev. E, 2016, vol. 93, no. 2, 020202, 5 pp.

    Google Scholar 

  15. Weiss, S. and Deegan, R. D., Weakly and Strongly Coupled Belousov – Zhabotinsky Patterns, Phys. Rev. E, 2017, vol. 95, no. 2, 022215, 11 pp.

    MathSciNet  Google Scholar 

  16. Totz, J. F., Rode, J., Tinsley, M. R., Showalter, K., and Engel, H., Spiral Wave Chimera States in Large Populations of Coupled Chemical Oscillators, Nat. Phys., 2018, vol. 14, no. 3, pp. 282–285.

    Google Scholar 

  17. Kuramoto, Y. and Battogtokh, D., Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators, Nonlin. Phen. Compl. Sys., 2002, vol. 5, no. 4, pp. 380–385.

    Google Scholar 

  18. Abrams, D. M. and Strogatz, S. H., Chimera States for Coupled Oscillators, Phys. Rev. Lett., 2004, vol. 93, no. 17, 174102, 4 pp.

    Google Scholar 

  19. Tanaka, D. and Kuramoto, Y., Complex Ginzburg – Landau Equation with Nonlocal Coupling, Phys. Rev. E, 2003, vol. 68, no. 2, 026219, 8 pp.

    Google Scholar 

  20. Tinsley, M. R., Nkomo, S., and Showalter, K., Chimera and Phase-Cluster States in Populations of Coupled Chemical Oscillators, Nature Phys., 2012, vol. 8, pp. 662–665.

    Google Scholar 

  21. Martens, E. A., Thutupalli, S., Fourrière, A., and Hallatschek, O., Chimera States in Mechanical Oscillator Networks, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, no. 26, pp. 10563–10567.

    Google Scholar 

  22. Rosin, D. P., Rontani, D., Haynes, N. D., Schöll, E., and Gauthier, D. J., Transient Scaling and Resurgence of Chimera States in Networks of Boolean Phase Oscillators, Phys. Rev. E, 2014, vol. 90, no. 3, 030902, 5 pp.

    Google Scholar 

  23. Schmidt, L. T., Schönleber, K., Krischer, K., and García-Morales, V., Coexistence of Synchrony and Incoherence in Oscillatory Media under Nonlinear Global Coupling, Chaos, 2014, vol. 24, no. 1, 013102, 7 pp.

    MathSciNet  Google Scholar 

  24. Kapitaniak, T., Kuzma, P., Wojewoda, J., Czolczynski, K., and Maistrenko, Yu., Imperfect Chimera States for Coupled Pendula, Sci. Rep., 2014, vol. 4, 6379, 4 pp.

    Google Scholar 

  25. Omelchenko, I., Maistrenko, Yu., Hövel, Ph., and Schöll, E., Loss of Coherence in Dynamical Networks: Spatial Chaos and Chimera States, Phys. Rev. Lett., 2011, vol. 106, no. 23, 234102, 4 pp.

    Google Scholar 

  26. Maistrenko, Y., Sudakov, O., Osir, O., and Maistrenko, V., Chimera States in Three Dimensions, New J. Phys., 2015, vol. 17, no. 7, 073037, pp.

    Google Scholar 

  27. Zakharova, A., Kapeller, M., and Schöll, E., Chimera Death: Symmetry Breaking in Dynamical Networks, Phys. Rev. Lett., 2014, vol. 112, no. 15, 154101, 5 pp.

    Google Scholar 

  28. Shepelev, I. A., Strelkova, G. I., and Anishchenko, V. S., Chimera States and Intermittency in an Ensemble of Nonlocally Coupled Lorenz Systems, Chaos, 2018, vol. 28, no. 6, 063119, 9 pp.

    MathSciNet  MATH  Google Scholar 

  29. Shepelev, I. A., Bukh, A. V., Vadivasova, T. E., Anishchenko, V. S., and Zakharova, A., Double-Well Chimeras in \(2\)D Lattice of Chaotic Bistable Elements, Commun. Nonlinear Sci. Numer. Simul., 2018, vol. 54, pp. 50–61.

    MathSciNet  MATH  Google Scholar 

  30. Laing, C. R., Chimeras in Networks with Purely Local Coupling, Phys. Rev. E, 2015, vol. 92, no. 5, 050904, 5 pp.

    Google Scholar 

  31. Clerc, M. G., Coulibaly, S., Ferré, M. A., García-Ñustes, M. A., and Rojas, R. G., Chimera-Type States Induced by Local Coupling, Phys. Rev. E, 2016, vol. 93, no. 5, 052204, 5 pp.

    Google Scholar 

  32. Shepelev, I. A., Bukh, A. V., Ruschel, S., Yanchuk, S., and Vadivasova, T. E., Local Sensitivity of Spatiotemporal Structures, Nonlinear Dyn., 2018, vol. 94, no. 2, pp. 1019–1027.

    Google Scholar 

  33. Yeldesbay, A., Pikovsky, A., and Rosenblum, M., Chimeralike States in an Ensemble of Globally Coupled Oscillators, Phys. Rev. Lett., 2014, vol. 112, no. 14, 144103, 5 pp.

    Google Scholar 

  34. Hagerstrom, A. M., Murphy, Th. E., Roy, R., Hövel, P., Omelchenko, I., and Schöll, E., Experimental Observation of Chimeras in Coupled-Map Lattices, Nature Phys., 2012, vol. 8, pp. 658–661.

    Google Scholar 

  35. Viktorov, E. A., Habruseva, T., Hegarty, S. P., Huyet, G., and Kelleher, B., Coherence and Incoherence in an Optical Comb, Phys. Rev. Lett., 2014, vol. 112, no. 22, 224101, 5 pp.

    Google Scholar 

  36. Rattenborg, N. C., Amlaner, C. J., and Lima, S. L., Behavioral, Neurophysiological and Evolutionary Perspectives on Unihemispheric Sleep, Neurosci. Biobehav. Rev., 2000, vol. 24, no. 8, pp. 817–842.

    Google Scholar 

  37. Mormann, F., Kreuz, T., Andrzejak, R. G., David, P., Lehnertz, K., and Elger, C. E., Epileptic Seizures Are Preceded by a Decrease in Synchronization, Epilepsy Res., 2003, vol. 53, no. 3, pp. 173–185.

    Google Scholar 

  38. Andrzejak, R. G., Rummel, C., Mormann, F., and Schindler, K., All Together Now: Analogies between Chimera State Collapses and Epileptic Seizures, Sci. Rep., 2016, vol. 6, 23000, 10 pp.

    Google Scholar 

  39. Bansal, K., Garcia, J. O., Tompson, S. H., Verstynen, T., Vettel, J. M., and Muldoon, S. F., Cognitive Chimera States in Human Brain Networks, Sci. Adv., 2019, vol. 5, no. 4, eaau8535, 14 pp.

    Google Scholar 

  40. Shima, S. and Kuramoto, Y., Rotating Spiral Waves with Phase-Randomized Core in Nonlocally Coupled Oscillators, Phys. Rev. E, 2004, vol. 69, no. 3, 036213, 9 pp.

    Google Scholar 

  41. Laing, C. R., Chimeras in Two-Dimensional Domains: Heterogeneity and the Continuum Limit, SIAM J. Appl. Dyn. Syst., 2017, vol. 16, no. 2, pp. 974–1014.

    MathSciNet  MATH  Google Scholar 

  42. Omel’chenko, O. E., Wolfrum, M., Yanchuk, S., Maistrenko, Yu. L., and Sudakov, O., Stationary Patterns of Coherence and Incoherence in Two-Dimensional Arrays of Non-Locally-Coupled Phase Oscillators, Phys. Rev. E, 2012, vol. 85, no. 3, 036210, 5 pp.

    Google Scholar 

  43. Guo, S., Dai, Q., Cheng, H., Li, H., Xie, F., and Yang, J., Spiral Wave Chimera in Two-Dimensional Nonlocally Coupled Fitzhugh – Nagumo Systems, Chaos Solitons Fractals, 2018, vol. 114, pp. 394–399.

    MathSciNet  MATH  Google Scholar 

  44. Schmidt, A., Kasmatis, Th., Hizanidas, J., Provata, A., and Hövel, P., Chimera Patterns in Two-Dimensional Networks of Coupled Neurons, Phys. Rev. E, 2017, vol. 95, no. 3, 032224, 13 pp.

    MathSciNet  Google Scholar 

  45. Bukh, A. and Anishchenko, V., Spiral, Target, and Chimera Wave Structures in a Two-Dimensional Ensemble of Nonlocally Coupled van der Pol Oscillators, Tech. Phys. Lett., 2019, vol. 45, no. 7, pp. 675–678; see also: Pis’ma Zh. Tekh. Fiz., 2019, vol. 45, no. 13, pp. 40-43.

    Google Scholar 

  46. Shepelev, I. A. and Vadivasova, T. E., Variety of Spatio-Temporal Regimes in a 2D Lattice of Coupled Bistable FitzHugh – Nagumo Oscillators. Formation Mechanisms of Spiral and Double-Well Chimeras, Commun. Nonlinear Sci. Numer. Simul., 2019, vol. 79, 104925, 16 pp.

    MathSciNet  MATH  Google Scholar 

  47. Omel’chenko, E. and Knobloch, E., Chimerapedia: Coherence–Incoherence Patterns in One, Two and Three Dimensions, New J. Phys., 2019, vol. 21, no. 9, 093034, 31 pp.

    MathSciNet  Google Scholar 

  48. Haugland, S. W., Schmidt, L., and Krischer, K., Self-Organized Alternating Chimera States in Oscillatory Media, Sci. Rep., 2015, vol. 5, 9883, 5 pp.

    Google Scholar 

  49. Mikhailov, A. S. and Loskutov, A. Yu., Foundations of Synergetics 2: Complex Patterns, Berlin: Springer, 2012.

    MATH  Google Scholar 

  50. Pertsov, A. M., Ermakova, E. A., and Panfilov, A. V., Rotating Spiral Waves in a Modified FitzHugh – Nagumo Model, Phys. D, 1984, vol. 14, no. 1, pp. 117–124.

    MathSciNet  MATH  Google Scholar 

  51. Zaritski, R. M. and Pertsov, A. M., Stable Spiral Structures and Their Interaction in Two-Dimensional Excitable Media, Phys. Rev. E (3), 2002, vol. 66, no. 6, 066120, 6 pp.

    MathSciNet  Google Scholar 

  52. Cherry, E. M. and Fenton, F. H., Visualization of Spiral and Scroll Waves in Simulated and Experimental Cardiac Tissue, New J. Phys., 2008, vol. 10, no. 12, 125016, 43 pp.

    Google Scholar 

  53. Cherry, E. M., Fenton, F. H., and Gilmour, R. F., Jr., Mechanisms of Ventricular Arrhythmias: A Dynamical Systems-Based Perspective, Am. J. Physiol. Heart Circ. Physiol., 2012, vol. 302, no. 12, pp. H2451–H2463.

    Google Scholar 

  54. Bretschneider, T., Anderson, K., Ecke, M., Müller-Taubenberger, A., Schroth-Diez, B., Ishikawa-Ankerhold, H. C., and Gerisch, G., The Three-Dimensional Dynamics of Actin Waves, A Model of Cytoskeletal Self-Organization, Biophys. J., 2009, vol. 96, no. 7, pp. 2888–2900.

    Google Scholar 

  55. Pervolaraki, E. and Holden, A. V., Spatiotemporal Patterning of Uterine Excitation Patterns in Human Labour, Biosyst., 2013, vol. 112, no. 2, pp. 63–72.

    Google Scholar 

  56. Bukh, A., Strelkova, G., and Anishchenko, V., Spiral Wave Patterns in a Two-Dimensional Lattice of Nonlocally Coupled Maps Modeling Neural Activity, Chaos Solitons Fractals, 2019, vol. 120, pp. 75–82.

    MathSciNet  MATH  Google Scholar 

  57. Rice, S. O., Mathematical Analysis of Random Noise, Bell Syst. Tech. J., 1944, vol. 23, no. 3, pp. 282–332.

    MathSciNet  MATH  Google Scholar 

  58. Wu, Z.-M., Cheng, H.-Y., Feng, Y., Li, H.-H., Dai, Q.-L., and Yang, J.-Z., Chimera States in Bipartite Networks of FitzHugh – Nagumo Oscillators, Front. Phys., 2018, vol. 13, no. 2, 130503, pp.

    Google Scholar 

  59. Kundu, S., Majhi, S., Muruganandam, P., and Ghosh, D., Diffusion Induced Spiral Wave Chimeras in Ecological System, Eur. Phys. J. Spec. Top., 2018, vol. 227, pp. 983–993.

    Google Scholar 

Download references

Funding

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Project No 163436311-SFB 910. I.A.S., A.V.B. and V.S.A. thank for the financial support provided by RFBR and DFG according to the research project #20-52-12004, S.S.M. acknowledges the use of New Zealand eScience Infrastructure (NeSI) high performance computing facilities as part of this research.

Author information

Authors and Affiliations

Authors

Contributions

I.A.S., A.V.B. and S.S.M. devised an numerical experiment. All authors participated in discussing the results and were involved in writing the text of the paper.

Corresponding authors

Correspondence to Igor A. Shepelev, Andrei V. Bukh, Sishu S. Muni or Vadim S. Anishchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

22A26,54H12,06B99

APPENDIX

We also study the evolution of a spiral wave when the coupling range increases for the lattice of discrete-time oscillators (maps). A basic element of this lattice is the Nekorkin map described as follows:

$$\displaystyle x^{t+1}=x^{t}+F(x^{t})-y^{t}-\beta H(x^{t}-d),$$
(A.1)
$$\displaystyle y^{t+1}=y^{t}+\varepsilon(x^{t}-J),$$
where \(x^{t}\) is a variable that describes the dynamics of the membrane potential of the nerve cell, \(y^{t}\) is a variable that relates to the cumulative effect of all ion currents across the membrane, and the functions \(F(x^{t})\) and \(H(x^{t}-d)\) are given as follows:
$$\displaystyle F(x^{t})=x^{t}(x^{t}-a)(1-x^{t}),\qquad 0<a<1,$$
(A.2)
$$\displaystyle H(x^{t})=\begin{cases}1,\qquad x^{t}>0,\\ 0,\qquad\mbox{elsewhere}.\end{cases}$$
The parameter \(\varepsilon>0\) determines the characteristic time scale of \(y^{t}\), the parameter \(J\) controls the level of the membrane depolarization \((J<d)\), the parameters \(\beta>0\) and \(d>0\) determine the excitation threshold of bursting oscillations, and \(t=1,2,\ldots\) represents discrete time.

An \(N\times N\) 2D lattice of the nonlocally coupled Nekorkin maps is described by the following system of equations:

$$\displaystyle x_{i,j}^{t+1}=x_{i,j}^{t}+F(x_{i,j}^{t})-y_{i,j}^{t}-\beta H(x_{i,j}^{t}-d)+$$
$$\displaystyle+\dfrac{\sigma_{x}}{B_{i,j}^{x}}\sum\limits_{m_{x},n_{x}}\left[f(x_{m_{x},n_{x}}^{t})-f(x_{i,j}^{t})\right],$$
(A.3)
$$\displaystyle y_{i,j}^{t+1}=y_{i,j}^{t}+\varepsilon(x_{i,j}^{t}-J),$$
where \(m_{x},n_{x}\in\mathbb{N}\) are indices for nonlocal neighbors. The sum denotes nonlocal coupling of range \(R_{x}\) in a square domain. The parameter \(\sigma_{x}\) denotes the coupling strength between the elements in the \(x\) variable, and \(B_{i,j}^{x}\) gives the number of nonlocally coupled neighbors of node (\(i,j\)).

The numerical results show that, when the nonlocal coupling strength \(\sigma_{x}\) and the coupling range \(R_{x}\) are varied, the model (A.3) can exhibit all the typical spiral wave patterns, including spiral wave chimeras, which were observed earlier. Examples of these states are presented in Fig. 11 (left). It is seen that the evolution of a spiral wave with increasing values of the coupling range is the same as that of the systems described above. However, the region around the wave center has high sensitivity even when the coupling is local. This happens as the wave center element oscillates chaotically. Even a slight elongation of the coupling range leads to a significant expansion of the high-sensitive region around the wave center in space. The formation of the incoherence core has already taken place for \(r=0.05\). The right column in Fig. 11 illustrates the spatial distributions of the ILS with the growth of the coupling strength.

The evolution of the first three Lyapunov exponents for the system (A.3) is illustrated in Fig. 12. The behavior of all the Lyapunov exponents is simpler than that in the models (1.2) and (1.5). The lattice is always in the hyperchaotic regime (even for the very short and very long coupling ranges) because all the three calculated Lyapunov exponents are positive. The elongation of the coupling range leads to the growth of the values of the Lyapunov exponents. The value of \(\lambda_{1}(r)\) first monotonically increases and then undergoes almost no changes with increasing coupling range. The values of \(\lambda_{2}(r)\) and \(\lambda_{3}(r)\) also exhibit a monotonous increase. When the model (A.3) switches to the synchronous regime at \(r=0.23\), the values of all the three Lyapunov exponents sharply decrease, but remain positive.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepelev, I.A., Bukh, A.V., Muni, S.S. et al. Quantifying the Transition from Spiral Waves to Spiral Wave Chimeras in a Lattice of Self-sustained Oscillators. Regul. Chaot. Dyn. 25, 597–615 (2020). https://doi.org/10.1134/S1560354720060076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720060076

Keywords

Navigation