Skip to main content
Log in

Persistence of Hyperbolic-type Degenerate Lower-dimensional Invariant Tori with Prescribed Frequencies in Hamiltonian Systems

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

It is known that under Kolmogorov’s nondegeneracy condition, the nondegenerate hyperbolic invariant torus with Diophantine frequencies will persist under small perturbations, meaning that the perturbed system still has an invariant torus with prescribed frequencies. However, the degenerate torus is sensitive to perturbations. In this paper, we prove the persistence of two classes of hyperbolic-type degenerate lower-dimensional invariant tori, one of them corrects an earlier work [34] by the second author. The proof is based on a modified KAM iteration and analysis of stability of degenerate critical points of analytic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. For convenience, we let the perturbation be smaller than \(\varepsilon^{2d+1}\) instead of \(\varepsilon\). In fact, if \(\|P_{L}\|_{s,r}\leqslant\tilde{\varepsilon}\), by letting \(\varepsilon=\tilde{\varepsilon}^{\frac{1}{2d+1}}\leqslant r,\) it follows that

    $$\|P_{L}\|_{s,\varepsilon}\leqslant\|P_{L}\|_{s,r}\leqslant\tilde{\varepsilon}=\varepsilon^{2d+1}.$$
  2. Recall \(\bar{w}=(y,u,v)\).

  3. Notice the minus sign in front of \(v^{2}.\)

  4. See the next section for a precise definition.

References

  1. Arnol’d, V. I., Proof of a Theorem of A. N. Kolmogorov on the Invariance of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian, Russian Math. Surveys, 1963, vol. 18, no. 5, pp. 9–36; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 5, pp. 13-40.

    Article  Google Scholar 

  2. Dynamical Systems III, V. I. Arnol’d (Ed.), Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 1988.

    Google Scholar 

  3. Broer, H. W., Huitema, G. B., and Sevryuk, M. B., Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos, Lecture Notes in Math., vol. 1645, Berlin: Springer, 1996.

    MATH  Google Scholar 

  4. Brjuno, A. D., Analytic Form of Differential Equations: 1, Trans. Moscow Math. Soc., 1971, vol. 25, pp. 131–288; see also: Tr. Mosk. Mat. Obs., 1971, vol. 25, pp. 131–288. Brjuno, A. D., Analytic Form of Differential Equations: 2, Trans. Moscow Math. Soc., 1972, vol. 26, pp. 199–239; see also: Tr. Mosk. Mat. Obs., 1972, vol. 26, pp. 199-239.

    MathSciNet  Google Scholar 

  5. Cheng, Ch.-Q., Birkhoff – Kolmogorov – Arnold – Moser Tori in Convex Hamiltonian Systems, Commun. Math. Phys., 1996, vol. 177, no. 3, pp. 529–559.

    Article  MathSciNet  Google Scholar 

  6. Chierchia, L. and Gallavotti, G., Drift and Diffusion in Phase Space, Ann. Inst. H. Poincaré Phys. Théor., 1994, vol. 60, no. 1, 144 pp.

    MathSciNet  MATH  Google Scholar 

  7. Cong, F., Küpper, T., Li, Y., and You, J., KAM-Type Theorem on Resonant Surfaces for Nearly Integrable Hamiltonian Systems, J. Nonlinear Sci., 2000, vol. 10, no. 1, pp. 49–68.

    Article  MathSciNet  Google Scholar 

  8. Eliasson, L. H., Perturbations of Stable Invariant Tori for Hamiltonian Systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1988, vol. 15, no. 1, pp. 115–147.

    MathSciNet  MATH  Google Scholar 

  9. Eliasson, L. H., Biasymptotic Solutions of Perturbed Integrable Hamiltonian Systems, Bol. Soc. Brasil. Mat. (N.S.), 1994, vol. 25, no. 1, pp. 57–76.

    Article  MathSciNet  Google Scholar 

  10. Eliasson, L. H., Fayad, B., and Krikorian, R., KAM Tori near an Analytic Elliptic Fixed Point, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 801–831.

    Article  MathSciNet  Google Scholar 

  11. Eliasson, L. H., Fayad, B., and Krikorian, R., Around the Stability of KAM Tori, Duke Math. J., 2015, vol. 164, no. 9, pp. 1733–1775.

    Article  MathSciNet  Google Scholar 

  12. Gentile, G. and Gallavotti, G., Degenerate Elliptic Resonances, Commun. Math. Phys., 2005, vol. 257, no. 2, pp. 319–362.

    Article  MathSciNet  Google Scholar 

  13. Gentile, G., Degenerate Lower-Dimensional Tori under the Bryuno Condition, Ergodic Theory Dynam. Systems, 2007, vol. 27, no. 2, pp. 427–457.

    Article  MathSciNet  Google Scholar 

  14. Graff, S. M., On the Conservation of Hyperbolic Invariant Tori for Hamiltonian Systems, J. Differential Equations, 1974, vol. 15, pp. 1–69.

    Article  MathSciNet  Google Scholar 

  15. Kolmogorov, A. N., Preservation of Conditionally Periodic Movements with Small Change in the Hamilton Function, in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems (Volta Memorial Conference, Como, 1977), G. Casati, J. Ford (Eds.), Lect. Notes Phys. Monogr., vol. 93, Berlin: Springer, 1979, pp. 51–56; see also: Dokl. Akad. Nauk SSSR (N. S.), 1954, vol. 98, pp. 527–530.

    Chapter  Google Scholar 

  16. Li, Y. and Yi, Y., Persistence of Lower Dimensional Tori of General Types in Hamiltonian Systems, Trans. Amer. Math. Soc., 2005, vol. 357, no. 4, pp. 1565–1600.

    Article  MathSciNet  Google Scholar 

  17. Li, Y. and Yi, Y., Persistence of Hyperbolic Tori in Hamiltonian Systems, J. Differential Equations, 2005, vol. 208, no. 2, pp. 344–387.

    Article  MathSciNet  Google Scholar 

  18. Medvedev, A. G., Neishtadt, A. I., and Treschev, D. V., Lagrangian Tori near Resonances of Near-Integrable Hamiltonian Systems, Nonlinearity, 2015, vol. 28, no. 7, pp. 2105–2130.

    Article  MathSciNet  Google Scholar 

  19. Melnikov, V. K., On Some Cases of Conservation of Conditionally Periodic Motions under a Small Change of the Hamiltonian Function, Soviet Math. Dokl., 1965, vol. 6, no. 6, pp. 1592–1596; see also: Dokl. Akad. Nauk SSSR, 1965, vol. 165, no. 6, pp. 1245-1248.

    MATH  Google Scholar 

  20. Melnikov, V. K., A Family of Conditionally Periodic Solutions of a Hamiltonian System, Soviet Math. Dokl., 1968, vol. 9, no. 4, pp. 882–886; see also: Dokl. Akad. Nauk SSSR, 1968, vol. 181, no. 3, pp. 546-549.

    Google Scholar 

  21. Moser, J., Convergent Series Expansions for Quasi-Periodic Motions, Math. Ann., 1976, vol. 169, no. 1, pp. 136–176.

    Article  MathSciNet  Google Scholar 

  22. Pöschel, J., On Elliptic Lower Dimensional Tori in Hamiltonian Systems, Math. Z., 1989, vol. 202, no. 4, pp. 559–608.

    Article  MathSciNet  Google Scholar 

  23. Pöschel, J., A Lecture on the Classical KAM Theory, in Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), A. Katok et al. (Eds.), Adv. Math. Sci., vol. 69, Providence, RI: AMS, 2001, pp. 707–732.

    Chapter  Google Scholar 

  24. Rudnev, M. and Wiggins, S., KAM Theory near Multiplicity One Resonant Surfaces in Perturbations of a priori Stable Hamiltonian Systems, J. Nonlinear Sci., 1997, vol. 7, no. 2, pp. 177–209.

    Article  MathSciNet  Google Scholar 

  25. Rüssmann, H., On Twist Hamiltonians, Talk on the Colloque International: Mécanique céleste et systèmes hamiltoniens (Marseille, 1990).

  26. Rüssmann, H., Invariant Tori in Non-Degenerated Nearly Integrable Hamiltonian Systems, Regul. Chaotic Dyn., 2001, vol. 6, no. 2, pp. 119–204.

    Article  MathSciNet  Google Scholar 

  27. Sevryuk, M. B., Partial Preservation of Frequencies in KAM Theory, Nonlinearity, 2006, vol. 19, no. 5, pp. 1099–1140.

    Article  MathSciNet  Google Scholar 

  28. Sevryuk, M. B., KAM-Tori, Persistence and Smoothness, Nonlinearity, 2008, vol. 21, no. 10, pp. T177–T185.

    Article  MathSciNet  Google Scholar 

  29. Treshchëv, D. V., The Mechanism of Destruction of Resonant Tori in Hamiltonian Systems, Math. USSR Sb., 1991, vol. 68, no. 1, pp. 181–203; see also: Mat. Sb., 1989, vol. 180, no. 10, pp. 1325-1346.

    Article  MathSciNet  Google Scholar 

  30. Xu, J. X., You, J. G., and Qiu, Q. J., Invariant Tori for Nearly Integrable Hamiltonian Systems with Degeneracy, Math. Z., 1997, vol. 226, no. 3, pp. 375–387.

    Article  MathSciNet  Google Scholar 

  31. Xu, J. X. and You, J. G., Persistence of the Non-Twist Torus in Nearly Integrable Hamiltonian Systems, Proc. Amer. Math. Soc., 2010, vol. 138, no. 7, pp. 2385–2395.

    Article  MathSciNet  Google Scholar 

  32. Xu, J. X., On Small Perturbation of Two-Dimensional Quasi-Periodic Systems with Hyperbolic-Type Degenerated Equilibrium Point, J. Differential Equations, 2011, vol. 250, no. 1, pp. 551–571.

    Article  MathSciNet  Google Scholar 

  33. Xu, J. X., On Quasi-Periodic Perturbations of Hyperbolic-Type Degenerated Equilibrium Point of a Class of Planar Systems, Discrete Contin. Dyn. Syst. Ser. A, 2013, vol. 33, no. 6, pp. 2593–2619.

    Article  Google Scholar 

  34. You, J. G., A KAM Theorem for Hyperbolic-Type Degenerated Lower Dimensional Tori in Hamiltonian Systems, Commun. Math. Phys., 1998, vol. 192, no. 1, pp. 145–168.

    Article  Google Scholar 

  35. Zehnder, E., Generalized Implicit Function Theorems with Applications to Some Small Divisor Problems: 2, Comm. Pure Appl. Math., 1976, vol. 29, no. 1, pp. 49–111.

    Article  MathSciNet  Google Scholar 

Download references

Funding

J. Xu was supported by the National Natural Science Foundation of China (11871146, 11671077). J. You was supported by the National Natural Science Foundation of China (11871286) and the Nankai Zhide Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxiang Xu or Jiangong You.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

37J40, 37J25, 37J05

APPENDIX A. SOME BASIC PROPERTY OF FUNCTION

Lemma 8

Suppose that \(P(w)=\sum_{\beta\in{\mathbb{Z}}_{+}^{n+2}}P_{\beta}(x)\bar{w}^{\beta}\) is analytic on \(D(s,r).\) If \(\|P\|_{s,\varepsilon}\leqslant\varepsilon^{2d+1}\) , then

$$\|P_{\beta}\|_{s}\leqslant\varepsilon^{2d+1-|\beta|}\ \ \mbox{for}\ |\beta|\leqslant 2d.$$
Moreover, if \(\|P_{L}\|_{s,\varepsilon}\leqslant\varepsilon^{2d+1}\) and \(\varepsilon\leqslant\frac{r_{0}}{4}\leqslant\frac{r}{2}\leqslant\frac{r_{0}}{2}\) , then we have \(\|P_{L}\|_{s,r}\lessdot\varepsilon.\)

Proof

This lemma can be verified easily according to the definition and so we omit the details.     \(\square\)

Lemma 9

Suppose that \(P(w)=\sum_{|\beta|\geqslant 2d+1}P_{\beta}(x)\bar{w}^{\beta}\) is analytic on \(D(s,r).\) Let \(\|P\|_{s,r}\leqslant T.\) Then \(\|P\|_{s,\varepsilon}\lessdot T\varepsilon^{2d+1}\) if \(\varepsilon\leqslant\frac{r_{0}}{4}\leqslant\frac{r}{2}\leqslant\frac{r_{0}}{2}\) .

Proof

Let

$$f(\bar{w})=\sum_{|\beta|\geqslant 2d+1}\|P_{\beta}\|_{s}\bar{w}^{\beta}.$$
Then we have
$$\|P\|_{s,\varepsilon}=\sup_{\bar{w}\in D(\varepsilon)}|f(\bar{w})|.$$
The Cauchy estimate gives \(\|P_{\beta}\|_{s}\leqslant\frac{T}{r^{|\beta|}},\) then it follows that
$$|f(\bar{w})|\leqslant T\sum_{|\beta|\geqslant 2d+1}\frac{|\bar{w}^{\beta}|}{r^{|\beta|}}.$$
For all \(\bar{w}\in D(\varepsilon)\), we have
$$|f(\bar{w})|\leqslant T\sum_{|\beta|\geqslant 2d+1}\frac{\varepsilon^{|\beta|}}{r^{|\beta|}}\leqslant\frac{T}{r^{2d+1}}\sum_{\beta\in{\mathbb{Z}}_{+}^{n+2}}\frac{1}{2^{|\beta|}}\cdot\varepsilon^{2d+1}\lessdot\ T\varepsilon^{2d+1}\ .$$
\(\square\)

APPENDIX B. IMPLICIT FUNCTION THEOREM

Lemma 10

Let \(\Omega_{\rho}\) be a complex neighborhood of \(\Omega\) in \(\mathbb{C}^{n}\) with neighborhood radius \(\rho>0.\) Suppose \(f:\Omega_{\rho}\to\mathbb{C}^{n}\) is an analytic mapping and

$$|f-id|_{\Omega_{\rho}}\leqslant\varepsilon<\frac{\rho}{2},$$
where \(|\cdot|_{\Omega_{\rho}}\) indicates the super-norm on \(\Omega_{\rho}\) . Then \(f\) has an analytic inverse \(f^{-1}:\Omega_{\rho-2\varepsilon}\to\Omega_{\rho}\) such that \(|f^{-1}-id|_{\Omega_{\rho-2\varepsilon}}\leqslant\varepsilon.\)

This lemma is proved in [23] and here we omit the details.     \(\square\)

APPENDIX C. SOLVING HOMOLOGICAL LINEAR EQUATION

Let \(E(u,v)=\frac{1}{2}(au^{2}-bv^{2}).\) Consider the linear operator defined by

$$L:X(u,v)\to\{E,X\}(u,v),\ \ X\in\mathcal{X}=\mbox{span}\{u^{j}v^{l}\ |\ j+l=m\},$$
where \(\{E,X\}\) denotes the Poisson bracket of \(E\) and \(X\). Obviously, \(\mathcal{X}\) is the \((m+1)\)-dimensional linear space which consists of all homogeneous polynomials of \((u,v)\) of degree \(m\) spanned by \(\{v^{m},uv^{m-1},\cdots u^{m-1}v,u^{m}\}\). Let \(A\) be the matrix representation of the linear operator \(L\) on the basis \(\{v^{m},uv^{m-1},\cdots u^{m-1}v,u^{m}\}\), then we have the following lemma.

Lemma 11

The matrix \(A\) is given by

$$\begin{pmatrix}0&b&0&0&\cdots&0&0&0&0\\ ma&0&2b&0&\cdots&0&0&0&0\\ 0&(m-1)a&0&3b&\cdots&0&0&0&0\\ \vdots&\vdots&\cdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&0&\cdots&0&(m-2)b&0&0\\ 0&0&0&0&\cdots&3a&0&(m-1)b&0\\ 0&0&0&0&\cdots&0&2a&0&mb\\ 0&0&0&0&\cdots&0&0&a&0\end{pmatrix}$$
(C.1)
Moreover, \(A\) has \(m+1\) eigenvalues \(\{(m-2l)\mu\ \ |\ l=0,1,\cdots m\}\) , where \(\mu=\sqrt{ab}\) . In particular, if \(ab\geqslant 0\) and \(\lambda\in{\mathbb{C}},\lambda\neq 0,\mbox{Re}(\lambda)=0,\) then
$$|\det(\lambda I+A)|\geqslant|\lambda|^{m+1}\ \mbox{and}\ \|(\lambda I+A)^{-1}\|\leqslant\max\{c|\lambda|^{-m-1},\ 2|\lambda|^{-1}\},$$
where \(\|\cdot\|\) denotes the norm of operators and \(c\) is a constant depending only on \(a,b,m.\)

Proof

By the definition of the Poisson bracket we have

$$\{E,X\}=E_{u}X_{v}-E_{v}X_{u}=auX_{v}+bvX_{u}.$$
Let \(X(u,v)=\sum_{j+l=m}X_{j,l}u^{j}v^{l},\) where \((X_{0,m},X_{1,m-1},\cdots X_{m,0})\) are the coordinates of \(X\) under the basis \(\{u^{j}v^{m-j},\ j=0,1,\cdots m\}.\) It follows easily that
$$\{E,X\}=a\sum_{j=1}^{m}(m+1-j)X_{j-1,m+1-j}u^{j}v^{m-j}+b\sum_{j=0}^{m-1}(j+1)X_{j+1,m-j-1}u^{j}v^{m-j}.$$
Then we have (C.1).

Below we are going to find the eigenvalues of \(A\). If \(a=0\) or \(b=0\) , then \(\mu=0\) and so \(A\) has only zero as eigenvalue. Now suppose \(a>0\) and \(b>0\). Define a linear symplectic transformation \(\phi_{1}\) by

$$(u,v)=\phi_{1}(u_{+},v_{+})=(\kappa u_{+},\kappa^{-1}v_{+}),\ \mbox{where}\ \ \kappa=\left(\frac{b}{a}\right)^{\frac{1}{4}}.$$
Let \(\mu=\sqrt{ab}.\) Then under the new symplectic basis \((u_{+},v_{+})\) we have
$$E(u_{+},v_{+})=\frac{\mu}{2}(u_{+}^{2}-v_{+}^{2}).$$
Then we define another symplectic transformation \(\phi_{2}\) by
$$(u_{+},v_{+})=\phi_{2}(u,v)=\left(\frac{1}{\sqrt{2}}(u-v),\frac{1}{\sqrt{2}}(u+v)\right).$$
Under the new symplectic basis \((u,v)\), we have \(E(u,v)=\mu uv.\) Since the operator \(L\) is invariant under symplectic transformations, then, under the new symplectic variables \((u,v),\) it follows that
$$LX(u,v)=\{E,X\}(u,v),\ \ \ E(u,v)=\mu uv.$$
It is easy to see that \(\mu(m-2j)\) are eigenvalues of \(L\) with eigenvectors \(u^{j}v^{m-j}\) for all \(\ j=0,1,2\cdots m\). Since \(\mu\neq 0,\) they are all \(m+1\) different eigenvalues of \(A\).

If \(ab<0\), instead of the above \(\phi_{2}\), we use a symplectic transformation with multiplier \({\rm i}=\sqrt{-1}\), which is defined by

$$\phi_{2}^{\prime}:(u_{+},v_{+})\to(u,v)\ \mbox{with}\ \ u=\frac{1}{\sqrt{2}}(u_{+}-{\rm i}v_{+}),v=\frac{1}{\sqrt{2}}(u_{+}+{\rm i}v_{+}).$$
In the same way the result follows easily and we omit the details.

Below we estimate \((\lambda I+A)^{-1}\). If \(ab\geqslant 0\), obviously, we have

$$|\det(\lambda I+A)|=\Big{|}\prod_{j=0}^{m}(\lambda+\lambda_{j})\Big{|},$$
where \(\lambda_{j}=\sqrt{ab}(m-2j),\ j=0,1,2,\cdots m.\) Obviously, it follows that \(|\det(\lambda I+A)|\geqslant|\lambda|^{m+1}.\)

Let \(\lambda_{0}=\max\{1,2\|A\|\}\), where \(\|A\|\) is the operator norm of \(A\). If \(|\lambda|\geqslant\lambda_{0}\), we have \(\|\lambda^{-1}A\|\leqslant\frac{1}{2}\) and so \(\|(I+\lambda^{-1}A)^{-1}\|\leqslant 2.\) Thus,

$$\|(\lambda I+A)^{-1}\|=|\lambda|^{-1}\|(I+\lambda^{-1}A)^{-1}\|\leqslant 2|\lambda|^{-1}.$$

If \(|\lambda|\leqslant\lambda_{0},\) since \((\lambda I+A)^{-1}=(\det(\lambda I+A))^{-1}(\lambda I+A)^{*}\), where \((\lambda I+A)^{*}\) is the adjoint matrix. It is easy to see that \(\|(\lambda I+A)^{*}\|\leqslant c,\) where \(c\) depends on \(a,b,m,\lambda_{0}.\) So

$$\ \|(\lambda I+A)^{-1}\|\leqslant c|\lambda|^{-m-1}.$$
Hence,
$$\ \|(\lambda I+A)^{-1}\|\leqslant\max\{c|\lambda|^{-m-1},\ 2|\lambda|^{-1}\}.$$
\(\square\)

Lemma 12

Suppose that \(\omega\) is a Diophantine vector, i. e., (1.2) holds. Let

$$E(u,v)=\frac{1}{2}(au^{2}-bv^{2}),\ \ P=\sum_{j+l=m}P_{jl}(x)u^{j}v^{l}\ \ \mbox{ and}\ \ [P]=0,$$
where \([P]\) denotes the average of \(P\) with respect to \(x\) on \({\mathbb{T}}^{n}.\) Suppose \(a\geqslant 0\) and \(b\geqslant 0.\) Let
$$P_{jl}(x)=\sum_{k\neq 0}P_{ijk}e^{\rm{i}\langle k,x\rangle}.$$
Then there exists a unique homogeneous function \(W=\sum_{j+l=m}W_{jl}(x)u^{j}v^{l}\) satisfying
$$\tilde{L}W=\langle\omega,W_{x}\rangle+\{E,W\}=P.$$
(C.2)
Moreover, we have
$$\|W\|_{s-\sigma,r}\lessdot\ \alpha^{-m-1}\sigma^{-\tau(m+1)-n}\|P\|_{s,r},\ \forall\ 0<\sigma<s,r>0.$$

Proof

Let \(X=(W_{0,m},W_{1,m-1},\cdots W_{m,0}),\) \(Y=(P_{0,m},P_{1,m-1},\cdots P_{m,0}).\) Then Eq. (C.2) is equivalent to

$$\langle\omega,X_{x}\rangle+AX=Y.$$
Let \(\{X_{k}\}\) and \(\{Y_{k}\}\) be the Fourier coefficients of \(X\) and \(Y\), respectively, then
$$(\lambda I+A)X_{k}=Y_{k},\ \ \lambda={\rm i}\langle\omega,k\rangle.$$
It follows that
$$X_{k}=(\lambda I+A)^{-1}Y_{k}.$$
Note that \(|\lambda|\geqslant\frac{\alpha}{|k|^{\tau}},\ \ \forall|k|\neq 0\) and \(0<\alpha\leqslant 1.\) By Lemma 11, it follows that
$$\|(\lambda I+A)^{-1}\|\leqslant\max\{c|\lambda|^{-m-1},\ 2|\lambda|^{-1}\}\leqslant\max\{c,2\}\left(\frac{\alpha}{|k|^{\tau}}\right)^{-m-1}.$$
Then we have
$$\ \ \|X_{k}\|\lessdot\ \left(\frac{\alpha}{|k|^{\tau}}\right)^{-m-1}\|Y_{k}\|.$$
Then we have
$$\|X\|_{s-\sigma}\lessdot\ \alpha^{-m-1}\sigma^{-(m+1)\tau-n}\|Y\|_{s}$$
and so
$$\|W\|_{s-\sigma,r}\lessdot\ \alpha^{-m-1}\sigma^{-\tau(m+1)-n}\|P\|_{s,r},\ \ \forall\ 0<\sigma<s,r>0.$$
\(\square\)

Lemma 13 (Solving Homological Equation)

Let

$$N=\langle\omega,y\rangle+\frac{1}{2}\langle My,y\rangle+\langle y,E_{1}(u,v)\rangle+E_{2}(u,v)+\tilde{N}(\bar{w}),$$
where
$$E_{1}(u,v)=\tilde{a}u+\tilde{b}v,\ \ E_{2}(u,v)=\frac{1}{2}(au^{2}-bv^{2}),\ \ \tilde{N}(\bar{w})=\sum_{3\leqslant|\beta|\leqslant 2d}N_{\beta}\bar{w}^{\beta},$$
where \(\tilde{a},\tilde{b}\in{\mathbb{R}}^{n}.\) Suppose \(a\geqslant 0,b\geqslant 0\) and \(\omega\) is a Diophantine vector with (1.2) holding.

Write as

$$\mathcal{L}W=\{N,W\}=\tilde{L}W+H^{0}(W)+H^{1}(W)+H^{2}(W),$$
where
$$\tilde{L}W=\langle\omega,W_{x}\rangle+\{E_{2},W\},$$
$$H^{0}(W)=\langle y,\{E_{1},W\}\rangle=W_{u}\langle\tilde{a},y\rangle-W_{v}\langle\tilde{b},y\rangle,$$
(C.3)
and
$$H^{1}(W)=H^{1}_{0}(W)+H^{1}_{1}(W),\ \ H^{2}(W)=\{\tilde{N},W\},$$
(C.4)
where
$$H^{1}_{0}(W)=\langle E_{1},W_{x}\rangle=\langle\tilde{a},W_{x}\rangle u+\langle\tilde{b},W_{x}\rangle v,\ \ H^{1}_{1}(W)=-\langle MW_{x},y\rangle.$$
(C.5)

Recall that \(w=(x,y,u,v)\) and \(\bar{w}=(y,u,v)\) , \(\beta=(i,j,l)\in{\mathbb{Z}}_{+}^{n+2},\ \frac{r_{0}}{2}\leqslant r\leqslant r_{0}.\) Let

$$P(w)=\sum_{|\beta|\leqslant 2d}P_{\beta}(x)\bar{w}^{\beta},\ \ P_{\beta}(x)=\sum_{|k|\leqslant K}P_{\beta,k}e^{{\rm i}\langle k,x\rangle}.$$
Suppose
$$[P]=0,\ \|P\|_{s,\varepsilon}\leqslant\varepsilon^{2d+1}.$$
Then there exist \(W\) and \(R\) such that \(\mathcal{L}W=P+R,\) where
$$W(w)=\sum_{|\beta|\leqslant 2d}W_{\beta}(x)\bar{w}^{\beta},\ \ R=\sum_{2d+1\leqslant|\beta|\leqslant 4d-1}R_{\beta}(x)\bar{w}^{\beta}$$
with \([W]=[R]=0.\) Moreover, if \(\eta=\frac{\varepsilon}{\alpha^{\mu}\sigma^{\mu\tau+\nu n+2d}}\leqslant 1\) , we have
$$\|W\|_{s-\sigma,r}\lessdot\eta,\ \ \|W\|_{s-\sigma,\varepsilon}\lessdot\ \varepsilon^{2d}\eta,\ \ \|R\|_{s-\sigma,r}\lessdot\ \eta/\sigma,$$
where
$$\mu=\sum_{j=1}^{2d+1}\sum_{i=1}^{j+1}i,\ \ \ \ \nu=\sum_{j=1}^{2d+1}j,\ \ \ 0<\sigma<s.$$

Proof

It is easy to see that \(H^{0}(W)\) has the same order as \(W\) in \((y,u,v)\). More precisely, it makes the order of \((u,v)\) one less and the order of \(y\) one more. However, \(H^{1}(W)\) raises the order of \((y,u,v)\) one more. So we start with \(0\)-order terms, and then do it in the same way by increasing the order one by one. Inductively, after we normalize all \(m\)-order terms \(\sum_{|i|+j+l=m}P_{ijl}y^{i}u^{j}v^{l}\) , we turn to \((m+1)\)-order terms. For \(m\)-order terms, we begin with \(0\)-order terms of \(y\) with \(|i|=0\). When solving \(|i|\)-order terms of \(y\), it can produce some \((|i|+1)\)-order terms of \(y\), which is put into the next step. When \(|i|=m\), the term like \(W(\bar{w})=\sum_{|i|=m}P_{i00}y^{i}\) does not depend on \((u,v)\), so \(H^{0}(W)=0\) and it does not produce any new term.

When solving all \(m\)-order terms of \((y,u,v)\), \(H^{1}(W)\) may produce some \((m+1)\)-order terms of \((y,u,v)\), which are considered in solving \((m+1)\)-order terms later. Also note that

$$H^{2}(W)=\{\tilde{N}(\bar{w}),W\}=\sum_{3\leqslant|\beta|\leqslant 2d}\{N_{\beta}\bar{w}^{\beta},W\},$$
which makes the order of \(W\) higher than \(2\). These terms will be considered in later steps. After \(2d\) steps we finish the proof with some higher terms remaining.

1. Solving \(0\)-order terms: Let \(P_{0}=P\), first we consider the \(0\)-order term in \(P_{0}\). For convenience, define the project operators \(\Pi^{\bar{w}}_{m}\) and \(\Pi^{y}_{k}\) by

$$\Pi^{\bar{w}}_{m}\Big{(}\sum_{\beta}P_{\beta}\bar{w}^{\beta}\Big{)}=\sum_{|\beta|=m}P_{\beta}\bar{w}^{\beta},\ \ \Pi^{y}_{k}\Big{(}\sum_{\beta}P_{\beta}\bar{w}^{\beta}\Big{)}=\sum_{\beta=(i,j,l),|i|=k}P_{\beta}\bar{w}^{\beta}.$$
Let \(P^{0}_{0}=P_{000}(x)\) be the \(0\)-order term of \(P_{0}\). By Lemma 12 we find
$$W^{0}(w)=W_{000}(x)=\tilde{L}^{-1}\big{(}P_{0}^{0}(x)\big{)},$$
in which \(W_{000,k}=\frac{P_{000,k}}{\rm{i}\langle\omega,k\rangle},k\neq 0.\) Moreover,
$$\|W^{0}\|_{s-\sigma/2,r}\leqslant\frac{\varepsilon}{\alpha\sigma^{\tau+n}},\ \ \|W^{0}\|_{s-\sigma/2,\varepsilon}\lessdot\ \frac{\varepsilon^{2d+1}}{\alpha\sigma^{\tau+n}},\ \ [W^{0}]=0.$$

Noting that \(H^{0}(W^{0})=0\), we have

$$\mathcal{L}W^{0}=P_{0}^{0}+H^{1}(W^{0})+H^{2}(W^{0}).$$
(C.6)

2. Solving \(1\)-order terms: Now we consider \(1\)-order terms. Let

$$P_{1}=(P_{0}-P^{0}_{0})-H^{1}(W^{0})-H^{2}(W^{0}).$$
Then (C.6) becomes
$$\mathcal{L}W^{0}=P_{0}-P_{1}.$$
(C.7)

Since \(H^{1}(W^{0})\) and \(H^{2}(W^{0})\) include \(W^{0}_{x}\), by the estimate for \(W^{0}\), it is easy to see

$$\|P_{1}\|_{s-\sigma,r}\leqslant\frac{\varepsilon}{\alpha\sigma^{\tau+n+1}}.$$
Moreover, if \(\varepsilon\) is sufficiently small such that \(\frac{\varepsilon}{\alpha\sigma^{\tau+n+1}}\ll 1,\) then it follows that
$$\ \ \|P_{1}\|_{s-\sigma,\varepsilon}\lessdot\ \bigl{(}\varepsilon^{2d+1}+\frac{\varepsilon^{2d+2}}{\alpha\sigma^{\tau+n+1}}\bigr{)}\lessdot\ \varepsilon^{2d+1}.$$

Let

$$P^{1}_{1}=\Pi_{1}^{\bar{w}}P_{1}=\Pi_{1}^{\bar{w}}(P_{0}-P^{0}_{0})-H^{1}(W^{0}).$$
Let
$$W^{1}_{0}=\tilde{L}^{-1}(\Pi_{0}^{y}P^{1}_{1}),\ \ W^{1}_{1}=\tilde{L}^{-1}\big{(}(\Pi_{1}^{y})P^{1}_{1}-H^{0}(W^{1}_{0})\bigr{)},W^{1}=W^{1}_{0}+W^{1}_{1}.$$

Note that \(W^{1}_{1}\) does not depend on \((u,v)\) and \(H^{0}(W^{1}_{1})=0\). It follows that

$$\mathcal{L}W^{1}=P^{1}_{1}+H^{1}(W^{1})+H^{2}(W^{1}).$$
Let
$$P_{2}=P_{1}-P^{1}_{1}-H^{1}(W^{1})-H^{2}(W^{1}).$$
Then \(\Pi^{\bar{w}}_{m}P_{2}=0,\ \forall\ m\leqslant 1.\) Moreover,
$$\mathcal{L}W^{1}=P_{1}-P_{2},\ \ \ \mathcal{L}(W^{0}+W^{1})=P_{0}-P_{2}.$$
(C.8)

Below we estimate \(W^{1}\) and \(P_{2}\). Obviously \(P^{1}_{1}\) and \(\Pi_{0}^{y}P^{1}_{1}\) have the same estimates as \(P^{1}\), by Lemma 12 it follows that

$$\|W^{1}_{0}\|_{s-\frac{4}{3}\sigma,r}\lessdot\frac{\varepsilon}{\alpha^{2+1}\sigma^{2\tau+n+\tau+n+1}},\ \ \|W^{1}_{0}\|_{s-\frac{4}{3}\sigma,\varepsilon}\lessdot\ \frac{\varepsilon^{2d+1}}{\alpha^{2}\sigma^{2\tau+n}},\ \ [W^{1}_{0}]=0.$$

Also note that \(H^{0}(W^{1}_{0})\) has the same estimate as \(W^{1}_{0}\), so we have

$$\|W^{1}_{1}\|_{s-\frac{5}{3}\sigma,r}\lessdot\frac{\varepsilon}{\alpha^{2+1+1}\sigma^{(2+1)\tau+2n+\tau+n+1}},\ \ \|W^{1}_{1}\|_{s-\frac{5}{3}\sigma,\varepsilon}\lessdot\ \frac{\varepsilon^{2d+1}}{\alpha^{2+1}\sigma^{(2+1)\tau+2n}},\ \ [W^{1}_{1}]=0.$$

By the above estimate for \(W^{1}_{0},W^{1}_{1}\), it is easy to see

$$\|P_{2}\|_{s-2\sigma,r}\leqslant\frac{\varepsilon}{\alpha^{2+1+1}\sigma^{(2+1)\tau+2n+\tau+n+2}}.$$
Moreover, if \(\varepsilon\) is sufficiently small such that \(\frac{\varepsilon}{\alpha^{2+1}\sigma^{(2+1)\tau+2n+1}}\ll 1,\) then it follows that
$$\ \ \|P_{2}\|_{s-2\sigma,\varepsilon}\lessdot\ \bigl{(}\varepsilon^{2d+1}+\frac{\varepsilon^{2d+2}}{\alpha^{2+1}\sigma^{(2+1)\tau+2n+1}}\bigl{)}\lessdot\ \varepsilon^{2d+1}.$$
Obviously \(W^{1}\) has the same estimate as \(W^{1}_{1}\) and we have
$$\|W^{1}\|_{s-2\sigma,r}\leqslant\frac{\varepsilon}{\alpha^{4}\sigma^{4\tau+3n+1}},\ \ \|W^{1}\|_{s-2\sigma,\varepsilon}\lessdot\ \frac{\varepsilon^{2d+1}}{\alpha^{3}\sigma^{3\tau+2n}},\ \ [W^{1}]=0.$$

3. Solving \(2d\)-order terms: After \(2d\) steps, we have solved all \((2d-1)\)-order terms and obtained

$$W^{2d-1}=W^{2d-1}_{0}+W^{2d-1}_{1}+\cdots W^{2d-1}_{2d-1}$$
and \(P_{2d}\) such that
$$\mathcal{L}(W^{2d-1})=P^{2d-1}_{2d-1}+H^{1}(W^{2d-1})+H^{2}(W^{2d-1})$$
and
$$\mathcal{L}(W^{1}+\cdots W^{2d-1})=P_{0}-P_{2d}$$
where
$$P_{2d}=P_{2d-1}-P^{2d-1}_{2d-1}-H^{1}(W^{2d-1})-H^{2}(W^{2d-1}).$$
Here also note that \(W^{2d-1}_{2d-1}\) does not depend on \((u,v)\) and so \(H^{0}(W^{2d-1}_{2d-1})=0.\)

Moreover, for \(W^{2d-1}\) and \(P_{2d}\) we have estimates

$$\|W^{2d-1}\|_{s-(2d+\frac{1}{2})\sigma,r}\leqslant\frac{\varepsilon}{\alpha^{\mu_{2d-1}}\sigma^{\mu_{2d-1}\tau+\nu_{2d-1}n+2d-1}},$$
$$\|W^{2d-1}\|_{s-(2d+\frac{1}{2})\sigma,\varepsilon}\lessdot\ \frac{\varepsilon^{2d+1}}{\alpha^{\nu_{2d}}\sigma^{\nu_{2d}+2dn}},$$
and \([W^{2d-1}]=0,\) where the notations \(\mu_{m}\) and \(\nu_{k}\) are defined by
$$\mu_{m}=\nu_{0}+\nu_{1}+\nu_{2}\cdots+\nu_{m+1},\ \ \nu_{k}=1+2+\cdots+k+1.$$

Then it follows that

$$\|P_{2d}\|_{s-2d\sigma,r}\leqslant\frac{\varepsilon}{\alpha^{\mu_{2d-1}}\sigma^{\mu_{2d-1}\tau+\nu_{2d-1}n+2d}}.$$
Moreover, if \(\varepsilon\) is sufficiently small such that \(\frac{\varepsilon}{\alpha^{\nu_{2d}}\sigma^{\nu_{2d}+2dn+1}}\leqslant 1,\) it follows that
$$\ \ \|P_{2d}\|_{s-2\sigma,\varepsilon}\lessdot\ \frac{\varepsilon^{2d+2}}{\alpha^{\nu_{2d}}\sigma^{\nu_{2d}+2dn+1}}\lessdot\ \varepsilon^{2d+1}.$$

Below we consider \(2d\)-order terms. Let \(P_{2d}^{2d}=\Pi_{2d}^{\bar{w}}P_{2d}\). Obviously, \(P_{2d}^{2d}=\sum_{j=0}^{2d}\Pi_{j}^{y}P_{2d}^{2d}.\) Let

$$W^{2d}_{0}=\tilde{L}^{-1}(\Pi_{0}^{y}P^{2d}_{2d}),\ \ W^{2d}_{1}=\tilde{L}^{-1}\big{(}\Pi_{1}^{y}P^{2d}_{2d}-H^{0}(W^{2d}_{0})\bigr{)},\ $$
$$W^{2d}_{2}=\tilde{L}^{-1}\big{(}\Pi_{2}^{y}P^{2d}_{2d}-H^{0}(W^{2d}_{1})\bigr{)},\quad\ldots,\quad W^{2d}_{2d}=\tilde{L}^{-1}\big{(}\Pi_{2d}^{y}P^{2d}_{2d}-H^{0}(W^{2d}_{2d-1})\bigr{)}.$$
Thus,
$$W^{2d}=W^{2d}_{0}+W^{2d}_{1}+\cdots W^{2d}_{2d}.$$
Here we note that \(W^{2d}_{2d}\) does not depend on \((u,v)\) and so \(H^{0}(W^{2d}_{2d})=0.\)

Then

$$\mathcal{L}(W^{2d})=P^{2d}_{2d}+H^{1}(W^{2d})+H^{2}(W^{2d}).$$
Let \(W=W^{0}+W^{1}+\cdots W^{2d}\), then
$$\mathcal{L}(W)=P_{0}-P_{2d+1},$$
where
$$P_{2d+1}=P_{2d}-P^{2d}_{2d}-H^{1}(W^{2d})-H^{2}(W^{2d})$$
only consists of over \(2d\)-order terms of \(\bar{w}\).

Below we estimate \(W^{2d}\) and \(P_{2d+1}.\) By Lemma 12 it follows that

$$\|W^{2d}_{0}\|_{s-(2d+\frac{1}{2d+2})\sigma,r}\lessdot\frac{\|P_{2d}\|_{s-2d\sigma,r}}{\alpha\sigma^{\tau+n}},$$
$$\|W^{2d}_{0}\|_{s-(2d+\frac{1}{2d+2})\sigma,\varepsilon}\lessdot\ \frac{\|P_{2d}\|_{s-2d\sigma,\varepsilon}}{\alpha\sigma^{\tau+n}},$$
and \([W^{2d}_{0}]=0.\)

Similarly, for any \(1\leqslant j\leqslant 2d\) we have

$$\|W^{2d}_{j}\|_{s-(2d+\frac{j+1}{2d+2})\sigma,r}\lessdot\frac{\|W^{2d}_{j-1}\|_{s-(2d+\frac{j}{2d+2})\sigma,r}}{\alpha^{2d-j+1}\sigma^{(2d-j+1)\tau+(j+1)n}}\leqslant\cdots\lessdot\frac{\|P_{2d}\|_{s-2d\sigma,r}}{\alpha^{\bar{\nu}_{j+1}}\sigma^{\bar{\nu}_{j+1}\tau+(j+1)n}},$$
$$\ \ \|W^{2d}_{j}\|_{s-(2d+\frac{j+1}{2d+2})\sigma,\varepsilon}\lessdot\frac{\|W^{2d}_{j-1}\|_{s-(2d+\frac{j}{2d+2})\sigma,r}}{\alpha^{2d-j+1}\sigma^{(2d-j+1)\tau+(j+1)n}}\lessdot\cdots\lessdot\ \frac{\|P_{2d}\|_{s-2d\sigma,\varepsilon}}{\alpha^{\bar{\nu}_{j+1}}\sigma^{\bar{\nu}_{j+1}\tau+(j+1)n}},$$
where \(\bar{\nu}_{j+1}=2d+1+2d+\cdots+(2d+1-j).\) Moreover, we have \([W^{2d}_{j}]=0.\)

Thus, it follows that

$$\|W^{2d}\|_{s-(2d+\frac{2d+1}{2d+2})\sigma,r}\leqslant\frac{\|P_{2d}\|_{s-2d\sigma,r}}{\alpha^{\nu_{2d+1}}\sigma^{\nu_{2d+1}\tau+(2d+1)n}}\leqslant\frac{\varepsilon}{\alpha^{\mu_{2d}}\sigma^{\mu_{2d}\tau+\nu_{2d}n+2d}},$$
$$\ \ \|W^{2d}\|_{s-(2d+\frac{2d+1}{2d+2})\sigma,\varepsilon}\lessdot\ \frac{\varepsilon^{2d+1}}{\alpha^{\nu_{2d+1}}\sigma^{\nu_{2d+1}\tau+(2d+1)n}},$$
and \([W^{2d}]=0.\) Moreover,
$$\|P_{2d+1}\|_{s-(2d+1)\sigma,r}\leqslant\frac{\varepsilon}{\alpha^{\mu_{2d}}\sigma^{\mu_{2d}\tau+\nu_{2d}n+2d+1}}.$$

Let \(R=-P_{2d+1}\). Noting that \(W\) has the same estimate as \(W^{2d}\) and replacing \((2d+1)\sigma\) with \(\sigma,\) \(\mu\) with \(\mu_{2d}\) and \(\nu\) with \(\nu_{2d},\) we have proved this lemma.     \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., You, J. Persistence of Hyperbolic-type Degenerate Lower-dimensional Invariant Tori with Prescribed Frequencies in Hamiltonian Systems. Regul. Chaot. Dyn. 25, 616–650 (2020). https://doi.org/10.1134/S1560354720060088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720060088

Keywords

Navigation