Skip to main content
Log in

Rheonomic Systems with Nonlinear Nonholonomic Constraints: The Voronec Equations

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

One of the earliest formulations of dynamics of nonholonomic systems traces back to 1895 and is due to Chaplygin, who developed his analysis under the assumption that a certain number of the generalized coordinates do not occur either in the kinematic constraints or in the Lagrange function. A few years later Voronec derived equations of motion for nonholonomic systems removing the restrictions demanded by the Chaplygin systems. Although the methods encountered in the following years favor the use of the quasi-coordinates, we will pursue the Voronec method, which deals with the generalized coordinates directly. The aim is to establish a procedure for extending the equations of motion to nonlinear nonholonomic systems, even in the rheonomic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence, R.I.: AMS, 1972.

    MATH  Google Scholar 

  2. Benenti, S., A General Method for Writing the Dynamical Equations of Nonholonomic Systems with Ideal Constraints, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 283–315.

    Article  MathSciNet  Google Scholar 

  3. Bloch, A. M., Marsden, J. E., and Zenkov, D. V., Nonholonomic Dynamics, Notices Amer. Math. Soc., 2005, vol. 52, no. 3, pp. 324–333.

    MathSciNet  MATH  Google Scholar 

  4. de León, M., A Historical Review on Nonholomic Mechanics, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 2012, vol. 106, no. 1, pp. 191–224.

    Article  MathSciNet  Google Scholar 

  5. Marle, Ch.-M., Various Approaches to Conservative and Nonconservative Nonholonomic Systems, Rep. Math. Phys., 1998, vol. 42, no. 1–2, pp. 211–229.

    Article  MathSciNet  Google Scholar 

  6. Cameron, J. M. and Book, W. J., Modeling Mechanism with Nonholonomic Joints Using the Boltzmann – Hamel Equations, Int. J. Robot. Res., 1993, vol. 16, no. 1, pp. 47–59.

    Article  Google Scholar 

  7. de León, M. and de Diego, D. M., On the Geometry of Non-Holonomic Lagrangian Systems, J. Math. Phys., 1996, vol. 37, no. 7, pp. 3389–3414.

    Article  MathSciNet  Google Scholar 

  8. de León, M., Marrero, J. C., and de Diego, D. M., Mechanical Systems with Nonlinear Contraints, Int. J. Theor. Phys., 1997, vol. 36, pp. 979–955.

    Article  Google Scholar 

  9. Massa, E. and Pagani, E., Classical Dynamics of Non-Holonomic Systems: A Geometric Approach, Ann. Inst. H. Poincaré, 1991, vol. 55, no. 1, pp. 511–544.

    MathSciNet  MATH  Google Scholar 

  10. Massa, E. and Pagani, E., A New Look at Classical Mechanics of Constrained Systems, Ann. Inst. H. Poincaré, 1997, vol. 66, no. 1, pp. 1–36.

    MathSciNet  MATH  Google Scholar 

  11. Bloch, A. M., Marsden, J. E., and Zenkov, D. V., Quasivelocities and Symmetries in Non-Holonomic Systems, Dyn. Syst., 2009, vol. 24, no. 2, pp. 187–222.

    Article  MathSciNet  Google Scholar 

  12. Papastavridis, J. G., Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems, Singapore: World Sci., 2014.

    Book  Google Scholar 

  13. Zeković, D. N., Dynamics of Mechanical Systems with Nonlinear Nonholonomic Constraints: 1. The History of Solving the Problem of a Material Realization of a Nonlinear Nonholonomic Constraint, ZAMM Z. Angew. Math. Mech., 2011, vol. 91, no. 11, pp. 883–898.

    Article  MathSciNet  Google Scholar 

  14. de León, M., Marrero, J. C., and Martin de Diego, D., Time-Dependent Mechanical Systems with Non-Linear Constraints, in New Developments in Differential Geometry (Budapest, 1996), Dordrecht: Kluwer, 1999, pp. 221–234.

    Chapter  Google Scholar 

  15. Voronec, P. V., On the Equations of Motion of a Heavy Rigid Body Rolling without Sliding on a Horizontal Plane, Kiev. Univ. Izv., 1901, no. 11, pp. 1–17.

    Google Scholar 

  16. Chaplygin, S. A., On a Motion of a Heavy Body of Revolution on a Horizontal Plane, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 119–130.

    Article  MathSciNet  Google Scholar 

  17. Benenti, S., The Non-Holonomic Double Pendulum: An Example of Non-Linear Non-Holonomic System, Regul. Chaotic Dyn., 2011, vol. 16, no. 5, pp. 417–442.

    Article  MathSciNet  Google Scholar 

  18. Appell, P., Les mouvements de roulement en dynamique (avec deux notes de M. Hadamard), Paris: Carré et Naud, 1899.

    MATH  Google Scholar 

  19. Hamel, G., Die Lagrange – Eulerschen Gleichungen der Mechanik, Z. Math. Phys., 1904, vol. 50, pp. 1–57.

    MATH  Google Scholar 

  20. Maruskin, J. M. and Bloch, A. M., The Boltzmann – Hamel Equations for the Optimal Control of Mechanical Systems with Nonholonomic Constraints, Internat. J. Robust Nonlinear Control, 2011, vol. 21, no. 4, pp. 373–386.

    Article  MathSciNet  Google Scholar 

  21. Gantmacher, F. R., Lectures in Analytical Mechanics, Moscow: Mir, 1975.

    Google Scholar 

  22. Lurie, A. I., Analytical Mechanics, Berlin: Springer, 2002.

    Book  Google Scholar 

  23. Pars, L. A., A Treatise on Analytical Dynamics, New York: Wiley, 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Talamucci.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

70H03, 37J60, 70F25

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talamucci, F. Rheonomic Systems with Nonlinear Nonholonomic Constraints: The Voronec Equations. Regul. Chaot. Dyn. 25, 662–673 (2020). https://doi.org/10.1134/S1560354720060106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720060106

Keywords

Navigation