Skip to main content
Log in

Recent trends in crystal engineering of high-mobility materials for organic electronics

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

Acenes and heteroacenes are receiving great attention in fundamental and applied science due to their interesting optoelectronic and charge transport properties. Their easy synthesis and functionalization have enabled the rapid development of a large number of molecular materials with remarkable charge-transport properties. This perspective provides an overview of their fundamental properties, molecular packing/morphology and charge transport properties and summarizes the progress made in recent years in the development of new high-mobility small-molecule materials focusing in particular on crystalline materials that have been able to approach or surpass mobilities of amorphous silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature (London) 475, 364 (2011).

    Article  CAS  Google Scholar 

  2. A. Y. Amin, A. Khassanov, K. Reuter, T. Meyer-Friedrichsen, and M. Halik, J. Am. Chem. Soc. 134, 16548 (2012).

    Article  CAS  Google Scholar 

  3. E. Menard, V. Podzorov, S.-H. Hur, A. Gaur, M. E. Gershenson, and J. A. Rogers, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 16, 2097 (2004).

    Article  CAS  Google Scholar 

  4. O. D. Jurchescu, M. Popinciuc, B. J. Van Wees, and T. T. M. Palstra, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 19, 688 (2007).

    Article  CAS  Google Scholar 

  5. C. Reese and Z. Bao, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 19, 4535 (2007).

    Article  CAS  Google Scholar 

  6. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science (Washington, D. C.) 303, 1644 (2004).

    Article  CAS  Google Scholar 

  7. J. Li, Y. Zhao, H. S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y, Zhou, H. Su, and B. S. Ong, Sci. Rep. 2, 754 (2012).

    Google Scholar 

  8. G. R. Desiraju, Crystal Engineering: The Design of Organic Solids (Elsevier Science, Amsterdam, 1989).

    Google Scholar 

  9. J. L. Brédas, J. P. Calbert, D. A. Da Silva Filho, and J. Cornil, Proc. Natl. Acad. Sci. U. S. A. 99, 5804 (2002).

    Article  Google Scholar 

  10. M. D. Curtis, J. Cao, and J. W. Kampf, J. Am. Chem. Soc. 126, 4318 (2004).

    Article  CAS  Google Scholar 

  11. V. Coropceanu, J. Cornil, D. A. Da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, Chem. Rev. 107, 926 (2007).

    Article  CAS  Google Scholar 

  12. J. E. Anthony, J. S. Brooks, D. L. Eaton, and S. R. Parkin, J. Am. Chem. Soc. 123, 9482 (2001).

    Article  CAS  Google Scholar 

  13. J. E. Anthony, D. L. Eaton, and S. R. Parkin, Org. Lett. 4, 15 (2002).

    Article  CAS  Google Scholar 

  14. S. C. B. Mannsfeld, M. L. Tang, and Z. Bao, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 23, 127 (2011).

    Article  CAS  Google Scholar 

  15. S. K. Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey, Appl. Phys. Lett. 91, 063517 (2007).

    Google Scholar 

  16. G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, Nature (London) 480, 504 (2011).

    Article  CAS  Google Scholar 

  17. G. R. Llorente, M.-B. Dufourg-Madec, D. J. Crouch, R. G. Pritchard, S. Ogier, and S. G. Yeates, Chem. Commun. 21, 3059 (2009).

    Article  Google Scholar 

  18. F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci. 58, 380 (2002).

    Article  Google Scholar 

  19. M. Watanabe, Y. J. Chang, S.-W. Liu, T. H. Chao, K. Goto, I. Minarul, C.-H. Yuan, Y.-T. Tao, T. Shinmyozu, and T. J. Chow, Nat. Chem. 4, 574 (2012).

    Article  CAS  Google Scholar 

  20. M. M. Payne, S. R. Parkin, and J. E. Anthony, J. Am. Chem. Soc. 127, 8028 (2005).

    Article  CAS  Google Scholar 

  21. H. Meng, M. Bendikov, G. Mitchell, R. Helgeson, F. Wudl, Z. Bao, T. Siegrist, C. Kloc, and C.-H. Chen, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 15, 1090 (2003).

    Article  CAS  Google Scholar 

  22. Q. Miao, X. Chi, S. Xiao, R. Zeis, M. Lefenfeld, T. Siegrist, M. L. Steigerwald, and C. Nuckolls, J. Am. Chem. Soc. 128, 1340 (2006).

    Article  CAS  Google Scholar 

  23. K. Kobayashi, R. Shimaoka, M. Kawahata, M. Yamanaka, and K. Yamaguchi, Org. Lett. 8, 2385 (2006).

    Article  CAS  Google Scholar 

  24. T. Kimoto, K. Tanaka, M. Kawahata, K. Yamaguchi, S. Otsubo, Y. Sakai, Y. Ono, A. Ohno, and K. Kobayashi, J. Org. Chem. 76, 5018 (2011).

    Article  CAS  Google Scholar 

  25. H. Moon, R. Zeis, E.-J. Borkent, C. Besnard, A. J. Lovinger, T. Siegrist, C. Kloc, and Z. Bao, J. Am. Chem. Soc. 126, 15322 (2004).

    Article  CAS  Google Scholar 

  26. X. Chi, D. Li, H. Zhang, Y. Chen, V. Garcia, C. Garcia, and T. Siegrist, Org. Electron. 9, 234 (2008).

    Article  CAS  Google Scholar 

  27. J. Li, M. Wang, S. Ren, X. Gao, W. Hong, H. Li, and D. Zhu, J. Mater. Chem. 22, 10496 (2012).

    Article  CAS  Google Scholar 

  28. M. Wang, J. Li, G. Zhao, Q. Wu, Y. Huang, W. Hu, X. Gao, H. Li, and D. Zhu, Adv. Mater. 25, 2229 (2013).

    Article  CAS  Google Scholar 

  29. M. C. R. Delgado, K. R. Pigg, D. A. Da Silva Filho, N. E. Gruhn, Y. Sakamoto, T. Suzuki, R. M. Osuna, J. Casado, V. Hernández, J. T. L. Navarrete, N. G. Martinelli, J. Cornil, R. S. Sánchez-Carrera, V. Coropceanu, and J.-L. Brédas, J. Am. Chem. Soc. 131, 1502 (2009).

    Article  CAS  Google Scholar 

  30. Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, and S. Tokito, J. Am. Chem. Soc. 126, 8138 (2004).

    Article  CAS  Google Scholar 

  31. V. Podzorov, V. M. Pudalov, and M. E. Gershenson, Appl. Phys. Lett. 82, 1739 (2003).

    Article  CAS  Google Scholar 

  32. V. Podzorov, S. E. Sysoev, E. Loginova, V. M. Pudalov, and M. E. Gershenson, Appl. Phys. Lett. 83, 3504 (2003).

    Article  CAS  Google Scholar 

  33. M.-M. Ling, C. Reese, A. L. Briseno, and Z. Bao, Synth. Met. 157, 257 (2007).

    Article  CAS  Google Scholar 

  34. W. H. Taylor, Z. Krist. 93, 151 (1936).

    CAS  Google Scholar 

  35. S. A. Akopyan, R. L. Avoyan, and Yu. T. Struchkov, Zh. Strukt. Khim. 3, 602 (1962).

    CAS  Google Scholar 

  36. D. E. Henn, W. G. Williams, and D. J. Gibbons, J. Appl. Crystallogr. 4, 256 (1971).

    Article  CAS  Google Scholar 

  37. I. Bulgarovskaya, V. Vozzhennikov, and S. V. Aleksandrov, Belsky, Latv. PSR Zinat. Akad. Vestis, Fiz. Teh. Zinat., Ser. 4, 53 (1983).

    Google Scholar 

  38. T. Matsukawa, M. Yoshimura, K. Sasai, M. Uchiyama, M. Yamagishi, Y. Tominari, Y. Takahashi, J. Takeya, Y. Kitaoka, Y. Mori, and T. Sasaki, J. Cryst. Growth 312, 310 (2010).

    Article  CAS  Google Scholar 

  39. S. Bergantin and M. Moret, Cryst. Growth Des. 12, 6035 (2012).

    Article  CAS  Google Scholar 

  40. G. Schuck, S. Haas, A. F. Stassen, H.-J. Kirner, and B. Batlogg, Acta Crystallogr., Sect. E 63, 02893 (2007).

    Article  Google Scholar 

  41. S. Haas, A. F. Stassen, G. Schuck, K. P. Pernstich, D. J. Gundlach, B. Batlogg, U. Berens, and H.-J. Kirner, Phys. Rev B: Condens. Matter 76, 115203 (2007).

    Article  Google Scholar 

  42. K. A. McGarry, W. Xie, C. Sutton, C. Risko, Y. Wu, V.G. Young, J.-L. Brédas, C. D. Frisbie, and C. J. Douglas, Chem. Mater. 25, 2254 (2013).

    Article  CAS  Google Scholar 

  43. W. Xie, K. A. McGarry, F. Liu, Y. Wu, P. P. Ruden, C. J. Douglas, and C. D. Frisbie, J. Phys. Chem. C 117, 11522 (2013).

    Article  CAS  Google Scholar 

  44. K. Takimiya, M. Nakano, M. J. Kang, E. Miyazaki, and I. Osaka, Eur. J. Org. Chem. 2013, 217 (2013).

    Article  CAS  Google Scholar 

  45. W. Jiang, Y. Li, and Z. Wang, Chem. Soc. Rev. 42, 6113 (2013).

    Article  CAS  Google Scholar 

  46. K. Takimiya, S. Shinamura, I. Osaka, and E. Miyazaki, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 23, 4347 (2011).

    Article  CAS  Google Scholar 

  47. J. G. Laquindanum, H. E. Katz, and A. J. Lovinger, J. Am. Chem. Soc. 120, 664 (1998).

    Article  CAS  Google Scholar 

  48. M. M. Payne, S. R. Parkin, J. E. Anthony, C.-C. Kuo, and T. N. Jackson, J. Am. Chem. Soc. 127, 4986 (2005).

    Article  CAS  Google Scholar 

  49. S. Subramanian, S. K. Park, S. R. Parkin, V. Podzorov, T. N. Jackson, and J. E. Anthony, J. Am. Chem. Soc. 130, 2706 (2008).

    Article  CAS  Google Scholar 

  50. O. D. Jurchescu, S. Subramanian, R. J. Kline, S.D. Hudson, J. E. Anthony, T. N. Jackson, and D. J. Gundlach, Chem. Mater. 20, 6733 (2008).

    Article  CAS  Google Scholar 

  51. Y. Mei, M. A. Loth, M. Payne, W. Zhang, J. Smith, C. S. Day, S. R. Parkin, M. Heeney, I. McCulloch, T. D. Anthopoulos, J. E. Anthony, and O. D. Jurchescu, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 25, 4352 (2013).

    Article  CAS  Google Scholar 

  52. H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, and T. Yui, J. Am. Chem. Soc. 129, 15732 (2007).

    Article  CAS  Google Scholar 

  53. T. Uemura, Y. Hirose, M. Uno, K. Takimiya, and J. Takeya, Appl. Phys. Express 2, 111501 (2009).

    Article  Google Scholar 

  54. C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, and K. Tsukagoshi, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 23, 523 (2011).

    Article  CAS  Google Scholar 

  55. S. Haas, Y. Takahashi, K. Takimiya, and T. Hasegawa, Appl. Phys. Lett. 95, 022111 (2009).

    Article  Google Scholar 

  56. W. Xie, K. Willa, Y. Wu, R. Häusermann, K. Takimiya, B. Batlogg, and C. D. Frisbie, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 25, 3478 (2013).

    Article  CAS  Google Scholar 

  57. A. N. Sokolov, S. Atahan-Evrenk, R. Mondal, H. B. Akkerman, R. S. Sánchez-Carrera, S. Granados-Focil, J. Schrier, S. C Mannsfeld, A. P. Zoombelt, and Z. Bao, Nat. Commun. 2, 437 (2011).

    Article  Google Scholar 

  58. M. J. Kang, E. Miyazaki, I. Osaka, K. Takimiya, and A. Nakao, ACS Appl. Mater. Interfaces 5, 2331 (2013).

    Article  CAS  Google Scholar 

  59. Y. S. Yang, T. Yasuda, H. Kakizoe, H. Mieno, H. Kino, Y. Tateyama, and C. Adachi, Chem. Commun. 49, 6483 (2013).

    Article  CAS  Google Scholar 

  60. T. Okamoto, C. Mitsui, M. Yamagishi, K. Nakahara, J. Soeda, Y. Hirose, K. Miwa, H. Sato, A. Yamano, T. Matsushita, T. Uemura, and J. Takeya, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 25, 6395 (2013).

    Google Scholar 

  61. Y. Miyata, E. Yoshikawa, T. Minari, K. Tsukagoshi, and S. Yamaguchi, J. Mater. Chem. 22, 7715 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Yassar.

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yassar, A. Recent trends in crystal engineering of high-mobility materials for organic electronics. Polym. Sci. Ser. C 56, 4–19 (2014). https://doi.org/10.1134/S1811238214010111

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238214010111

Keywords

Navigation