Skip to main content
Log in

The Rheological Behavior of Polymer Solution Threads

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

Theoretical results of the authors in the field of the capillary thinning of polymer solution threads are reviewed. The dynamics of threads of both concentrated solutions without entanglements and dilute solutions, where hydrodynamic interactions play an important role, is considered. A molecular approach, in which macromolecules are simulated by a semiflexible chain, is used as a basis. This makes it possible to describe, from common positions, the nonlinear elasticity of solution and interactions taking into account the orientation of the chains. Particular attention is given to thread thinning in the region of the elastic behavior of solution where macromolecules unfold along the axis of stretching. The results of analysis of the capillary stability of a thread and conditions for solvent droplets emergence on its surface are presented, and the dynamics of formation of the hierarchical structure of beads-on-string droplets is viewed. Mechanisms behind the subsequent merging of droplets related to solvent overflow and droplets diffusion along the polymer string are discussed. The polymer string breakup occurs at time scales higher than the Rouse relaxation time of the polymer chain. String hardening and fiber formation may be an alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. M. Denn, Annu. Rev. Fluid Mech. 12, 365 (1980).

    CAS  Google Scholar 

  2. G. H. McKinley, Rheol. Rev., 1–48 (2005).

  3. O. A. Basaran, H. Gao, and P. P. Bhat, Annu. Rev. Fluid Mech. 45, 85 (2013).

    Google Scholar 

  4. A. Ya. Malkin, A. Arinstein, and V. G. Kulichiknin, Prog. Polym. Sci. 39, 959 (2014).

    CAS  Google Scholar 

  5. D. Lohse, Annu. Rev. Fluid Mech. 54, 349 (2022).

    Google Scholar 

  6. J. Eggers and E. Villermaux, Rep. Prog. Phys. 71, 036601 (2008).

  7. Y. Li and J. E. Sprittles, J. Fluid Mech. 797, 29 (2016).

    CAS  Google Scholar 

  8. Y.-J. Chen and P. H. Steen, J. Fluid Mech. 341, 245 (1997).

    Google Scholar 

  9. R. F. Day, E. J. Hinch, and J. R. Lister, Phys. Rev. Lett. 80, 704 (1998).

    CAS  Google Scholar 

  10. A. U. Chen, P. K. Notz, and O. A. Basaran, Phys. Rev. Lett. 88, 174501 (2002).

  11. V. Tirtaatmadja, G. H. McKinley, and J. J. Cooper-White, Phys. Fluids 18, 043101 (2006).

  12. S. Sur and J. Rothstein, J. Rheol. 62, 1245 (2018).

    CAS  Google Scholar 

  13. J. Dinic and V. Sharma, Phys. Fluids 31, 021211 (2019).

  14. J. Dinic and V. Sharma, Proc. Nat. Acad. Sci. 116, 8766 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Wee, C. R. Anthony, and O. A. Basaran, Phys. Rev. Fluids 7, L112001 (2022).

  16. L. Rayleigh, Proc. Lond. Math. Soc. 1, 4 (1878).

    Google Scholar 

  17. T. Driessen, R. Jeurissen, H. Wijshoff, F. Toschi, and D. Lohse, Phys. Fluids 25, 062109 (2013).

  18. L. Rayleigh, Philos. Mag. 34, 145 (1892).

    Google Scholar 

  19. D. T. Papageorgiou, Phys. Fluids 7, 1529 (1995).

    CAS  Google Scholar 

  20. D. T. Papageorgiou, J. Fluid Mech. 301, 109 (1995).

    Google Scholar 

  21. A. V. Bazilevskii, S. I. Voronkov, V. M. Entov, and A. N. Rozhkov, Sov. Phys. Dokl. 26, 333 (1981).

    Google Scholar 

  22. A. V. Bazilevskii, V. M. Entov, M. M. Lerner, and A. N. Rozhkov, Polym. Sci. A 39, 316 (1997).

    Google Scholar 

  23. Y. Christanti and L. M. Walker, J. Non-Newtonian Fluid Mech. 100, 9 (2001).

  24. Y. Amarouchene, D. Bonn, J. Meunier, and H. Kellay, Phys. Rev. Lett. 86, 3558 (2001).

    CAS  PubMed  Google Scholar 

  25. M. Stelter, G. Brenn, A. L. Yarin, R. P. Singh, and F. Durst, J. Rheol. 44, 595 (2000).

    CAS  Google Scholar 

  26. M. Stelter, G. Brenn, A. L. Yarin, R. P. Singh, and F. Durst, J. Rheol. 46, 507 (2002).

    CAS  Google Scholar 

  27. A. V. Bazilevskii, V. M. Entov, and A. N. Rozhkov, J. Polym. Sci. A 43, 716 (2001).

    Google Scholar 

  28. A. Deblais, M. A. Herrada, J. Eggers, and D. Bonn, J. Fluid Mech. 904, R2 (2020).

    CAS  Google Scholar 

  29. A. L. Yarin, Free Liquid Jets and Films: Hydrodynamics and Rheology (Wiley, New York, 1993).

    Google Scholar 

  30. V. M. Entov and E. J. Hinch, J. Non-Newtonian Fluid Mech. 72, 31 (1997).

  31. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Fluids (Wiley, New York, 1987).

    Google Scholar 

  32. G. H. McKinley and A. Tripathi, J. Rheol. 44, 653 (2000).

    CAS  Google Scholar 

  33. S. L. Anna and G. H. McKinley, J. Rheol. 45, 115 (2001).

    CAS  Google Scholar 

  34. G. H. McKinley and T. Sridhar, Annu. Rev. Fluid Mech. 34, 375 (2002).

    Google Scholar 

  35. C. Clasen, J. P. Plog, W.-M. Kulicke, M. Owens, C. Macosko, L. E. Scriven, M. Verani, and G. H. McKinley, J. Rheol. 50, 849 (2006).

    CAS  Google Scholar 

  36. A. V. Bazilevskii and A. N. Rozhkov, Fluid Dyn. 49, 827 (2014).

    Google Scholar 

  37. A. V. Bazilevskii and A. N. Rozhkov, Fluid Dyn. 50, 800 (2015).

    CAS  Google Scholar 

  38. J. Dinic, Y. Zhang, L. N. Jimenez, and V. Sharma, ACS Macro Lett. 4, 804 (2015).

    CAS  PubMed  Google Scholar 

  39. J. Dinic, L. N. Jimenez, and V. Sharma, Lab Chip 17, 460 (2017).

    CAS  PubMed  Google Scholar 

  40. B. Keshavarz, V. Sharma, E. C. Houze, M. R. Koerner, J. R. Moore, P. M. Cotts, P. Threlfall-Holmes, and G. H. McKinley, J. Non-Newtonian Fluid Mech. 222, 171 (2015).

  41. M. A. Renardy, J. Non-Newtonian Fluid Mech. 59, 267 (1995).

  42. H.-C. Chang, E. A. Demekhin, and E. Kalaidin, Phys. Fluids 11, 1717 (1999).

    CAS  Google Scholar 

  43. M. A. Fontelos, Phys. Fluids 15, 922 (2003).

    Google Scholar 

  44. P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, Nat. Phys. 6, 625 (2010).

    CAS  Google Scholar 

  45. A. M. Ardekani, V. Sharma, and G. H. McKinley, J. Fluid Mech. 665, 46 (2010).

    Google Scholar 

  46. E. Turkoz, J. M. Lopez-Herrera, J. Eggers, C. B. Arnold, and L. Deike, J. Fluid Mech. 851, R2 (2018).

    Google Scholar 

  47. C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, J. Fluid Mech. 556, 283 (2006).

    CAS  Google Scholar 

  48. J. Eggers, M. A. Herrada, and J. H. Snoeijer, J. Fluid Mech. 887, A19 (2020).

    CAS  Google Scholar 

  49. M. S. N. Oliveira and G. H. McKinley, Phys. Fluids 17, 071704 (2005).

  50. M. S. N. Oliveira, R. Yeh, and G. H. McKinley, J. Non-Newtonian Fluid Mech. 137, 137 (2006).

  51. R. Sattler, C. Wagner, and J. Eggers, Phys. Rev. Lett. 100, 164502 (2008).

  52. R. Sattler, S. Gier, J. Eggers, and C. Wagner, Phys. Fluids 24, 023101 (2012).

  53. A. V. Semakov, V. G. Kulichikhin, A. K. Tereshin, S. V. Antonov, and A. Ya. Malkin, J. Polym. Sci., Polym. Phys. Ed. 53, 559 (2015).

    CAS  Google Scholar 

  54. A. V. Semakov, I. Yu. Skvortsov, V. G. Kulichikhin, and A. Ya. Malkin, JETP Lett. 101, 690 (2015).

    CAS  Google Scholar 

  55. A. Ya. Malkin, A. V. Semakov, I. Yu. Skvortsov, P. Zatonskikh, V. G. Kulichikhin, A. V. Subbotin, and A. N. Semenov, Macromolecules 50, 8231 (2017).

    CAS  Google Scholar 

  56. V. G. Kulichikhin, I. Yu. Skvortsov, A. V. Subbotinn, S. V. Kotomnin, and A. Ya. Malkin, Polymers 10, 856 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. A. Deblais, K. P. Velikov, and D. Bonn, Phys. Rev. Lett. 120, 194501 (2018).

  58. H. V. M. Kibbelaar, A. Deblais, F. Burla, G. H. Koenderink, K. P. Velikov, and D. Bonn, Phys. Rev. Fluids 5, 092001 (R) (2020).

  59. M. Doi and A. Onuki, J. Phys. II France 2, 1631 (1992).

    CAS  Google Scholar 

  60. E. Helfand and G. H. Fredrickson, Phys. Rev. Lett. 62, 2468 (1989).

    CAS  PubMed  Google Scholar 

  61. S. T. Milner, Phys. Rev. E 48, 3674 (1993).

    CAS  Google Scholar 

  62. M. Cromer, M. C. Villet, G. H. Fredrickson, L. G. Leal, R. Stepanyan, and M. J. H. Bulters, J. Rheol. 57, 1211 (2013).

    CAS  Google Scholar 

  63. J. Eggers, Phys. Fluids 26, 033106 (2014).

  64. A. V. Subbotin and A. N. Semenov, Polym. Sci., Ser. A 54, 1066 (2016).

    CAS  Google Scholar 

  65. A. N. Semenov and A. V. Subbotin, Polym. Sci., Ser. A 55, 623 (2017).

    CAS  Google Scholar 

  66. A. V. Subbotin and A. N. Semenov, Polym. Sci., Ser. C 60, 106 (2018).

    CAS  Google Scholar 

  67. S. Donets and J.-U. Sommer, J. Phys. Chem. B 122, 392 (2018).

    CAS  PubMed  Google Scholar 

  68. S. Donets, O. Guskova, and J.-U. Sommer, J. Phys. Chem. B 124, 9224 (2020).

    CAS  PubMed  Google Scholar 

  69. A. V. Subbotin and A. N. Semenov, JETP Lett. 111, 55 (2020).

    CAS  Google Scholar 

  70. A. V. Subbotin and A. N. Semenov, J. Rheol. 64, 13 (2020).

    CAS  Google Scholar 

  71. A. V. Subbotin and A. N. Semenov, Macromolecules 55, 2096 (2022).

    CAS  Google Scholar 

  72. A. Semenov and I. Nyrkova, Polymers 14, 4420 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. A. V. Subbotin and A. N. Semenov, J. Rheol. 67, 53 (2023).

    CAS  Google Scholar 

  74. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Univ. Press, New York, 1986; Mir, Moscow, 1998).

  75. J. Zhou and M. Doi, Phys. Rev. Fluids 3, 084004 (2018).

  76. R. Prabhakar, S. Gadkari, T. Gopesh, and M. J. Shaw, J. Rheol. 60, 345 (2016).

    CAS  Google Scholar 

  77. A. N. Semenov and A. R. Khokhlov, Phys. Usp. 156, 988 (1988).

    Google Scholar 

  78. L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976; Pergamon Press, New York 1980).

  79. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation Grant no. 20-19-00194, https://rscf.ru/project/20-19-00194/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Subbotin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbotin, A.V., Nyrkova, I.A. & Semenov, A.N. The Rheological Behavior of Polymer Solution Threads. Polym. Sci. Ser. C 65, 11–26 (2023). https://doi.org/10.1134/S1811238223700224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238223700224

Navigation