Skip to main content
Log in

Alpha-tocopherol prevents long-term activation of ERK1/2 in neurons of the brain cortex under conditions of oxidative stress

  • Short Communications
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

We found that long-term (18 h) preincubation with alpha-tocopherol at microand nanomolar concentrations significantly increases the viability of H2O2-treated immature cultured neurons that were isolated from the cortex of the rat brain. We showed that H2O2 activates extracellular signal regulated protein kinase (ERK1/2) in neurons of the rat brain cortex. The maximum activity of the enzyme in cells was achieved in 5 min from the moment of application of the prooxidant. High activity of ERK1/2 was maintained at the same high level for 24 h after application of H2O2. Preincubation of immature cortical neurons for 18 h with 100 nM or 100 µM alpha-tocopherol did not prevent ERK1/2 activation (or enhanced it) at the early stage of H2O2 action. However, alpha-tocopherol significantly decreased (to values close to the control) ERK1/2 activity 5, 12, and 24 h after the onset of H2O2 treatment. According to the literature data, oxidative stress in the brain, which is caused by ischemia or other unfavorable treatments, results in persistent activation of ERK1/2 and administration of its inhibitors strongly prevents the death of brain neurons. These data suggest that the protective effect of alpha-T on the brain neurons in vivo is largely determined by alpha-Tinduced prevention of persistent ERK1/2 activation during oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zingg, J.M., Mol. Aspects Med., 2007, vol. 28, nos. 5–6, pp. 481–506.

    Article  CAS  PubMed  Google Scholar 

  2. Miller, E.R., Pastor-Barrius, R., Dala, D., Riemersm, R., Appe, L.J., and Guallar, E., Ann. Intern. Med., 2005, vol. 142, no. 1, pp. 37–46.

    Article  CAS  PubMed  Google Scholar 

  3. Bjelakovic, G., Nikolova, D., Gluud, L.L., Simonetti, R.G., and Gluud, C.J., Amer. Med. Association, 2007, vol. 297, no. 8, pp. 842–857.

    Article  CAS  Google Scholar 

  4. Numakawa, Y., Numakawa, T., Matsumoto, T., Yagasaki, Y., Kumamaru, E., Kunugi, H., and Taguchi, T., Niki, E., et al., J. Neurochem., 2006, vol. 97, no. 4, pp. 1191–1202.

    Article  CAS  PubMed  Google Scholar 

  5. Lu, K., Liang, C.L., Liliang, P.C., Yang, C.H., Cho, C.L., Weng, H.C., Tsai, Y.D., Wang, K.W., and Chen, H.J., J. Neurochem., 2010, vol. 114, no. 1, pp. 237–246.

    CAS  PubMed  Google Scholar 

  6. Namura, S., Iihara, K., Takami, S., Nagata, I., Kikuchi, H., Matsushita, K., Moskowitz, M.A., Bonventre, J.V., and Alessandrini, A., Proc. Natl. Acad. Sci. USA, 2001, vol. 98, no. 20, pp. 11 569–11574.

    Article  Google Scholar 

  7. Dichter, M.A., Brain Res., 1978, vol. 149, no. 2, pp. 279–293.

    Article  CAS  PubMed  Google Scholar 

  8. Vlasova, Yu.A., Zakharova, I.O., Sokolova, T.V., Furaev, V.V., Rychkova, M.P., and Avrova, N.F., Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, no. 5, pp. 465–471.

    PubMed  Google Scholar 

  9. Zakharova, I.O., Sokolova, T.V., Bayunova, L.V., Vlasova, Y.A., Rychkova, M.P., and Avrova, N.F., Int. J. Mol. Sci., 2012, vol. 13, no. 9, pp. 11543–11668.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ziegler, C.G., Sicard, F., Sperber, S., Ehrhart-Bornstein, M., Bornstein, S.R., and Krug, A.W., Ann. New York Acad. Sci., 2006, vol. 1073, pp. 306–311.

    Article  CAS  Google Scholar 

  11. Vauzour, D., Vafeiadou, K., Rice-Evans, C., Williams, R.J., and Spencer, J.P., J. Neurochem., 2007, vol. 103, no. 4, pp. 1355–1367.

    Article  CAS  PubMed  Google Scholar 

  12. Luo, Y., and DeFranco, D.B., J. Biol. Chem., 2006, vol. 281, no. 24, pp. 16436–16442.

    Article  CAS  PubMed  Google Scholar 

  13. Kulebyakin, K., Karpova, L., Lakonsteva, E., Krasavin, M., and Boldyrev, A., Amino Acids, 2012, vol. 43, no. 1, pp. 91–96.

    Article  CAS  PubMed  Google Scholar 

  14. Ho, Y., Samarasinghe, R., Knoch, M.E., Lewis, M., Aizenman E., Defranco, D.B., Mol. Pharmacol., 2008, vol. 74, no. 4, pp. 1141–1151.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Azzi, A., Breyer, I., Feher, M., Ricciarelli, R., Stocker, A., Zimmer, S., and Zingg, J., J. Nutr., 2001, vol. 131, no. 2, pp. 378S–381S.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Avrova.

Additional information

Original Russian Text © I.O. Zakharova, T.V. Sokolova, A.O. Akhmetshina, N.F. Avrova, 2015, published in Neirokhimiya, 2015, Vol. 32, No. 4, pp. 339–342.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, I.O., Sokolova, T.V., Akhmetshina, A.O. et al. Alpha-tocopherol prevents long-term activation of ERK1/2 in neurons of the brain cortex under conditions of oxidative stress. Neurochem. J. 9, 319–322 (2015). https://doi.org/10.1134/S1819712415040170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712415040170

Keywords

Navigation