Skip to main content
Log in

Alpha-tocopherol prevents a dramatic oxidative stress-induced decline of the Bcl-2 concentration in cortical neurons

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

We have shown that the protective effect of the prolonged (18 hours) incubation of cortical neurons with alpha-tocopherol (alpha-T) prior the action of H2O2 depends on the concentration in the nanomolar range (100 nM > 10 nM > 1 nM). The higher concentrations of alpha-T (1, 10, and 100 μM) increased the viability of cortical cells approximately equally to 100 nM alpha-T. We found that H2O2 has little effect on the concentration of the anti-apoptotic protein Bcl-2 in mitochondria of the neurons of the cerebral cortex during the first hours of its impact, but causes a dramatic decrease in its level in 12 and 24 hours after the start of its effect in comparison with the baseline values. If neurons are subjected to a prolonged (18 hours) preincubation with 100 nM or 100 μM alpha-T, the concentration of Bcl-2 12 and 24 hours after the application of H2O2 do not differ from the control values; however, it is higher than the concentration of Bcl-2 in neurons after exposure to H2O2 only. The level of the proapoptotic protein Bax in cortical neurons did not undergo prominent changes in the presence of H2O2 and alpha-T. A pronounced significant increase in the Bax/Bcl-2 ratio was found in neurons of the cerebral cortex at 12 and 24 hours after the start of the H2O2 effect on neurons of the cerebral cortex. Such prolonged incubation of neurons with 100 nM and 100 μM alpha-T prior to the H2O2 application normalizes these parameters and reduces the Bax/Bcl-2 ratio to the control values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pletyushkina, O.Yu., Fetisova, E.K., Lyamzaev, K.G., Ivanova, O.Yu., Domnina, L.V., Vysokikh, M.Yu., Pustovidko, A.V., Alekseevskii, A.V., Alekseevskii, D.A., Vasil’ev, Yu.M., Merfi, M.P., Chernyak, B.V., and Skulachev, V.P., Biochemistry, 2006, vol. 71, no. 1, pp. 60–75.

    Google Scholar 

  2. Adam-Vizi, V. and Chinopoulos, C., Trends Pharmacol. Sci., 2006, vol. 27, no. 12, pp. 639–645.

    Article  CAS  PubMed  Google Scholar 

  3. Andreev, A.Yu., Kushnareva, Yu.E., Murphy, E.N., and Starkov, A.A., Biochemistry, 2015, vol. 80, no. 5, pp. 517–531.

    Google Scholar 

  4. Wang, C. and Youle, R.J., Ann. Rev. Genet., 2009, vol. 43, pp. 95–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kowaltovski, A.J. and Fiscum, G., Antioxid. Redox Signal., 2005, vol. 7, nos. 3–4, pp. 508–514.

    Article  Google Scholar 

  6. Whelan, R.S., Konstantinidis, K., Wei, A.C., Chen, Y., Reyna, D.E., Jha, S., Yang, Y., Calvert, J.W., Lindsten, T., Thompson, C.B., Crow, M.T., Gavathiotis, E., and Dorn, G.W., O’Rourke, B., and Kitsis, R.N, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 17, pp. 6566–6571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chung, H., Seo, S., Moon, M., and Park, S., J. Endocrinol., 2008, vol. 198, no. 3, pp. 511–521.

    Article  CAS  PubMed  Google Scholar 

  8. Moslehi, M., Meshkini, A., and Yazdanparast, R., Cell Mol. Neurobiol., 2012, vol. 32, no. 4, pp. 549–560.

    Article  CAS  PubMed  Google Scholar 

  9. Bournival, J., Francoeur, M.A., Renaud, J., and Martinoli, M.G., Rejuvenation Res., 2012, vol. 15, no. 3, pp. 322–333.

    Article  CAS  PubMed  Google Scholar 

  10. Zakharova, I.O., Sokolova, T.V., Bayunova, L.V., Vlasova, Y.A., Rychkova, M.P., and Avrova, N.F., Int. J. Mol. Sci., 2012, vol. 13, no. 9, pp. 11543–11568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vassault, A., Methods of Enzymatic Analysis, Bergmeyer H.U., Ed., Weinheim: Verlag Chemie, 1983, vol. 3, pp. 118–126.

    CAS  Google Scholar 

  12. Numakawa, Y., Numakawa, T., Matsumoto, T., Yagasaki, Y., Kumamaru, E., Kunugi, H., Taguchi, T., and Niki, E., J. Neurochem., 2006, vol. 97, pp. 1191–1202.

    Article  CAS  PubMed  Google Scholar 

  13. Sokolova, T.V., Rychkova, M.P., Voinova, I.V., and Avrova, N.F., Zh. Evol. Biokhim. Fiziol., 2011, vol. 47, no. 5, pp. 375–382.

    CAS  PubMed  Google Scholar 

  14. Zakharova, I.O., Sokolova, T.V., Akhmetshina, A.O., and Avrova, N.F., Neurochem. J., 2015, vol. 9, no. 4, pp. 319–322.

    Article  CAS  Google Scholar 

  15. Schippling, S., Kontush, A., Arit, S., Buhmann, C., Sturenburg, H.J., Mann, U., Muller-Thomsen, T., and Beisiegel, U., Free Radic. Biol. Med., 2000, vol. 28, pp. 351–360.

    Article  CAS  PubMed  Google Scholar 

  16. Vatassery, G.T., Adityanjee, QuachH.T., Smith, W.E., Kuskowski, M.A., and Melnyk, D., J. Am. Coll. Nutr., 2004, vol. 23, pp. 233–238.

    Article  CAS  PubMed  Google Scholar 

  17. Bayunova, L.V., Sokolova, T.V., and Avrova, N.F., Zh. Evol. Biokhim. Fiziol., 2011, vol. 47, no. 3, pp. 205–211.

    Google Scholar 

  18. Zhivotovsky, B., Galluzzi, L., Kepp, O., and Kroemer, G., Cell Death Differ., 2009, vol. 16, no. 11, pp. 1419–1425.

    Article  CAS  PubMed  Google Scholar 

  19. Chan, J.Y., Chang, A.Y., Wang, L.L., Ou, C.C., and Chan, S.H., Mol. Pharmacol., 2007, vol. 71, pp. 1129–1139.

    Article  CAS  PubMed  Google Scholar 

  20. Vauzour, D., Vafeiadou, K., Rice-Evans, C., Williams, R.J., and Spencer, J.P., J. Neurochem., 2007, vol. 103, pp. 1355–1367.

    Article  CAS  PubMed  Google Scholar 

  21. Hsuan, S.L., Kinsworth, H.M., and Xia, Z., J. Neurosci., 2006, vol. 26, pp. 4481–4491.

    Article  CAS  PubMed  Google Scholar 

  22. Lu, K., Liang, C.-L., Liliang, P.-C., Yang, S.-H., Cho, C.-L., Weng, H.-C., Tsai, Y.-D., Wang, K.-W., and Chen, H.-J., J. Neurochem., 2010, vol. 114, pp. 237–246.

    CAS  PubMed  Google Scholar 

  23. Weinreb O., J. Neural Transm. (Vienna), 2016, vol. 123, pp. 81–82.

    Article  Google Scholar 

  24. Zakharova, I.O., Sokolova, T.V., and Avrova, N.F., Zh. Evol. Biokhim. Fiziol., 2016, vol. 52, no. 3, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Avrova.

Additional information

Original Russian Text © I.O. Zakharova, T.V. Sokolova, N.F. Avrova, 2016, published in Neirokhimiya, 2016, Vol. 33, No. 3, pp. 238–243.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, I.O., Sokolova, T.V. & Avrova, N.F. Alpha-tocopherol prevents a dramatic oxidative stress-induced decline of the Bcl-2 concentration in cortical neurons. Neurochem. J. 10, 226–231 (2016). https://doi.org/10.1134/S1819712416030144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712416030144

Keywords

Navigation