Skip to main content
Log in

Accumulation of corticosterone and interleukin-1β in the hippocampus after focal ischemic damage of the neocortex: Selective vulnerability of the ventral hippocampus

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Most ischemic strokes are caused by the occlusion of the middle cerebral artery (MCAO), which results in focal brain lesions in different areas of the neocortex. Secondary damage develops in brain regions located out of the infarct area, including the hippocampus. Hippocampal lesion may lead to cognitive impairments and post-stroke depression. Here, we studied the time course of changes in the levels of corticosterone and proinflammatory cytokine interleukine-1β (IL-1β) in the blood and hippocampus of rats after transient focal brain ischemia. Activation of the hypothalamo–pituitary–adrenal axis, which causes a release of corticosterone into blood, was observed at the early stage after MCAO and was accompanied by the presence of the stress hormone in the hippocampi of both the ischemic and contralateral hemispheres. We show for the first time that this effect was observed only in the ventral hippocampus (VH) but not in the dorsal hippocampus (DH). MCAO induced accumulation of the proinflammatory cytokine IL-1β, which coexisted with the elevated level of corticosterone at the early and delayed stages after reperfusion and was also observed in the VH of both hemispheres. Our data show that the VH is more vulnerable to remote damage induced by MCAO compared to the DH and corticosteroid response and neuroinflammation may be detected in the VH of both ischemic and contralateral hemispheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirnagl, U., Iadecola, C., and Moskowitz, M.A., Trends Neurosci., 1999, vol. 22, pp. 391–397.

    Article  CAS  PubMed  Google Scholar 

  2. Butler, T.L., Kassed, C.A., Sanberg, P.R., Willing, A.E., and Pennypacker, K.R., Brain Res., 2002, vol. 929, pp. 252–260.

    Article  CAS  PubMed  Google Scholar 

  3. Block, F., Dihné, M., and Loos, M., Prog. Neurobiol., 2005, vol. 75, pp. 342–365.

    Article  CAS  PubMed  Google Scholar 

  4. Lambertsen, K., Biber, K., and Finsen, B., J. Cereb. Blood Flow Metab., 2012, vol. 32, pp. 1677–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dunn, A.J., Ann. NY Acad. Sci., 2000, vol. 917, pp. 608–617.

    Article  CAS  PubMed  Google Scholar 

  6. John, C.D. and Buckingham, J.C., Curr. Opin. Pharmacol., 2003, vol. 3, pp. 78–84.

    Article  CAS  PubMed  Google Scholar 

  7. Fassbender, K., Schmidt, R., Mössner, R., Daffertshofer, M., and Hennerici, M., Stroke, 1994, vol. 25, pp. 1105–1108.

    Article  CAS  PubMed  Google Scholar 

  8. Johansson, A., Olsson, T., Carlberg, B., Karlsson, K., and Fagerlund, M., J. Neurol. Sci., 1997, vol. 147, pp. 43–47.

    Article  CAS  PubMed  Google Scholar 

  9. Sapolsky, R.M., Arch. Gen. Psychiatry, 2000, vol. 57, pp. 925–935.

    Article  CAS  PubMed  Google Scholar 

  10. Jacobson, L. and Sapolsky, R., Endocr. Rev., 1991, vol. 12, pp. 118–134.

    Article  CAS  PubMed  Google Scholar 

  11. Sarabdjitsingh, R.A., Meijer, O.C., Schaaf, M.J., and de Kloet, E.R., Brain Res., 2009, vol. 1249, pp. 43–53.

    Article  CAS  PubMed  Google Scholar 

  12. Segal, M., Richter-Levin, G., and Maggio, N., Hippocampus, 2010, vol. 20, pp. 1332–1338.

    Article  PubMed  Google Scholar 

  13. Gulyaeva, N.V., Ross. Fiziol. Zhurn. im. I.M. Sechenova, 2013, vol. 99, pp. 3–16.

    CAS  Google Scholar 

  14. Longa, E., Weinstein, P., Carlson, S., and Cummins, R., Stroke, 1989, vol. 20, pp. 84–91.

    Article  CAS  PubMed  Google Scholar 

  15. Lin, T.N., He, Y.Y., Wu, G., Khan, M., and Hsu, C.Y., Stroke, 1993, vol. 24, pp. 117–121.

    Article  CAS  PubMed  Google Scholar 

  16. Quast, M.J., Huang, N.C., Hillman, G.R., and Kent, T.A., Magn. Reson. Imaging, 1993, vol. 11, pp. 465–471.

    Article  CAS  PubMed  Google Scholar 

  17. Popp, A., Jaenisch, N., Witte, O.W., and Frahm, C., PLoS One, 2009, vol. 4: e4764.

  18. Smith-Swintosky, V.L., Pettigrew, L.C., Sapolsky, R.M., Phares, C., Craddock, S.D., Brooke, S.M., and Mattson, M.P., J. Cereb. Blood Flow Metab., 1996, vol. 16, pp. 585–598.

    Article  CAS  PubMed  Google Scholar 

  19. Dorey, R., Pierard, C., Chauveau, F., David, V., and Beracochea, D., Neuropsychopharmacology, 2012, vol. 37, pp. 2870–2880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Higo, S., Hojo, Y., Ishii, H., Komatsuzaki, Y., Ooishi, Y., Murakami, G., Mukai, H., Yamazaki, T., Nakahara, D., Barron, A., Kimoto, T., and Kawato, S., PLoS One, 2011, vol. 6: e21631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maggio, N. and Segal, M., Scientific World J., 2010, vol. 10, pp. 462–469.

    Article  CAS  Google Scholar 

  22. Sopala, M., Frankiewicz, T., Parsons, C., and Danysz, W., Neurosci. Lett., 2000, vol. 281, pp. 143–146.

    Article  CAS  PubMed  Google Scholar 

  23. Miyashita, K., Abe, H., Nakajima, T., Ishikawa, A., Nishiura-Suzuki, M., Naritomi, H., Tanaka, R., and Sawada, T., Neuroreport, 1994, vol. 5, pp. 945–948.

    Article  CAS  PubMed  Google Scholar 

  24. Robertson, D.A., Beattie, J.E., Reid, I.C., and Balfour, D.J., Eur. J. Neurosci., 2005, vol. 21, pp. 1511–1520.

    Article  CAS  PubMed  Google Scholar 

  25. Lambertsen, K.L., Biber, K., and Finsen, B., J. Cereb. Blood Flow Metab., 2012, vol. 32, pp. 1677–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doll, D.N., Barr, T.L., and Simpkins, J.W., Aging Dis., 2014, vol. 5, pp. 294–306.

    PubMed  PubMed Central  Google Scholar 

  27. Davies, C.A., Loddick, S.A., Toulmond, S., Stroemer, R.P., Hunt, J., and Rothwell, N.J., J. Cereb. Blood Flow Metab., 1999, vol. 19, pp. 87–98.

    Article  CAS  PubMed  Google Scholar 

  28. Nolden-Koch, M., Breuer, E., and Block, F., J. Neurol., 2000, vol. 247 (Suppl. 3), p. 129.

    Google Scholar 

  29. Uchida, H., Fujita, Y., Matsueda, M., Umeda, M., Matsuda, S., Kato, H., Kasahara, J., and Araki, T., Cell Mol. Neurobiol., 2010, vol. 30, pp. 1125–1134.

    Article  CAS  PubMed  Google Scholar 

  30. Jander, S., Schroeter, M., and Stoll, G., J. Neuroimmunol., 2000, vol. 109, pp. 181–187.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Onufriev.

Additional information

Original Russian Text © M.V. Onufriev, S.V. Freiman, Yu.V. Moiseeva, M.Yu. Stepanichev, N.A. Lazareva, N.V. Gulyaeva, 2017, published in Neirokhimiya, 2017, Vol. 34, No. 3, pp. 235–241.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onufriev, M.V., Freiman, S.V., Moiseeva, Y.V. et al. Accumulation of corticosterone and interleukin-1β in the hippocampus after focal ischemic damage of the neocortex: Selective vulnerability of the ventral hippocampus. Neurochem. J. 11, 236–241 (2017). https://doi.org/10.1134/S1819712417030084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712417030084

Keywords

Navigation