Skip to main content
Log in

The Dependence of the Protective Effect of Insulin on Its Concentration and Modulation of ERK1/2 Activity under the Conditions of Oxidative Stress in Cortical Neurons

  • Short Communications
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

It has been recently shown that insulin has a neuroprotective effect. Experimental studies and clinical trials have demonstrated that insulin is a promising drug for treatment of neurodegenerative and other diseases associated with brain damage. However, the mechanism of the neuroprotective effect of insulin is far from being elucidated. The aim of this study was to examine the dependence of the protective effect of insulin in cortical neurons on its concentration and the involvement of the modulation of the activity of extracellular signal-regulated kinase (ERK1/2) by insulin in neuronal survival. Using the MTT method, we found that the protective effect of insulin in neurons treated with hydrogen peroxide varied in the concentration range of 1–100 nm (1 nM < 10 nM < 100 nM). There were no significant differences between the effects of 100 nM or 1 nM insulin. The literature data on the effects of insulin on the activity of ERK1/2 in neurons are controversial. We studied the modulatory effect of insulin on the activity of ERK1/2 in cortical neurons during development of oxidative stress using the immunoblotting method at eight time points after prooxidant application. We found that insulin increased the basal activity of ERK1/2 and the activity of the enzyme at the early stage of action of hydrogen peroxide, that is, 5–30 min after its addition. This may improve the protective effect of insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Miller, E.R., Pastor-Barriuso, R., Dalal, D., Riemersma, R., Appel, L.J., and Guallar, E., Ann. Intern. Med., 2005, vol. 142, pp. 37–46.

    Article  CAS  PubMed  Google Scholar 

  2. Bjelakovic, G., Nikolova, D., Gluud, L.L., Simonetti, R.G., and Gluud, C., J. Amer. Med. Association, 2007, vol. 297, pp. 842–857.

    Article  CAS  Google Scholar 

  3. Bjelakovic, G., Nikolova, D., and Gluud, C., PLoS One, 2013, vol. 8, no. 9: e74558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duarte, A.I., Santos, P., Oliveira, C.R., Santos, M.S., and Rego, A.C., Biochim. Biophys. Acta, 2008, vol. 1783, pp. 994–1002.

    Article  CAS  PubMed  Google Scholar 

  5. Ramalingam, M. and Kim, S.J., J. Recept. Signal Transduct., Res., 2015, vol. 35, pp. 1–7.

    Article  CAS  Google Scholar 

  6. Sukhov, I.B., Shipilov, V.N., Chistyakova, O.V., Trost, A.M., and Shpakov, A.O., Dokl. Akad. Nauk, 2013, vol. 453, no. 5, pp. 577–580.

    Google Scholar 

  7. Shpakov, A.O., Derkach, K.V., and Berstein, L.M., Future Science OA (FSO), 2015, vol. 1, no. 3: FSO25. doi 10.4155/fso.15.23

    Google Scholar 

  8. Claxton, A., Baker, L.D., Hanson, A., Trittschuh, E.H., Cholerton, B., Morgan, A., Callaghan, M., Arbuckle, M., Behl, C., and Craft, S., J. Alzheimer’s Dis., vol. 44, no. 3, pp. 897–906.

  9. Shah, A.K., Gupta, A., and Dey, C.S., AICAR Arch. Biochem. Biophys., 2011, vol. 509, pp. 142–146.

    Article  CAS  PubMed  Google Scholar 

  10. Dichter, M.A., Brain Res., 1978, vol. 149, pp. 279–293.

    Article  CAS  PubMed  Google Scholar 

  11. Mironova, E.V., Evstratova, A.A., and Antonov, S.M., J. Neurosci. Methods, 2007, vol. 163, pp. 1–8.

    Article  PubMed  Google Scholar 

  12. Hansen, M.B., Nielsen, S.E., and Berg, K.J., Immunol. Methods, 1989, vol. 119, pp. 203–210.

    Article  CAS  Google Scholar 

  13. Zakharova, I.O., Sokolova, T.V., Bayunova, L.V., Vlasova, Y.A., Rychkova, M.P., and Avrova, N.F., Int. J. Mol. Sci., 2012, vol. 13, pp. 11543–11668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duarte, A.I., Santos, M.S., Oliveira, C.R., and Rego, A.C., Free Rad. Biol. Med., 2005, vol. 39, pp. 876–889.

    Article  CAS  PubMed  Google Scholar 

  15. Ryu, B.R., Ko, H.W., Jou, I., Noh, J.S., and Gwag, B.J., J. Neurobiol., 1999, vol. 39, pp. 536–546.

    Article  CAS  PubMed  Google Scholar 

  16. Hui, L., Pei, D.-S., Zhang, Q.-G., Guan, Q.-H., and Zhang, G.-Y., Brain Res., 2005, vol. 1052, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, L., Pei, D.-S., Zhang, Q-G., Guan, Q.-H., and Zhang, G.-Y., Antioxid. Redox Sign., 2011, vol. 14, pp. 1829–1839.

    Article  CAS  Google Scholar 

  18. Sui, Z., Kovacs, A.D., and Maggirwar, S.B., Biochem. Biophys. Res. Commun., 2006, vol. 345, pp. 1643–1648.

    Article  CAS  PubMed  Google Scholar 

  19. Filippi, B.M., Yang, C.S., Tang, C., and Lam, T.K., Cell Metab., 2012, vol. 16, pp. 500–510.

    Article  CAS  PubMed  Google Scholar 

  20. Kong, D., Gong, L., Arnold, E., Shanmugam, S., Fort, P.E., Gardner, T.W., and Abcouwer, S.F., Exp. Eye Res., 2015, vol. 151, pp. 83–95.

    Google Scholar 

  21. Ziegler, C.G., Sicard, F., Sperber, S., Ehrhart-Bornstein, M., Bornstein, S.R., and Krug, A.W., Ann. NY Acad. Sci., 2006, vol. 1073, pp. 306–311.

    Article  CAS  PubMed  Google Scholar 

  22. Vauzour, D., Vafeiadou K., Rice-Evans, C., Williams, R.J., and Spencer, J.P, J. Neurochem., 2007, vol. 103, pp. 1355–1367.

    Article  CAS  PubMed  Google Scholar 

  23. Zakharova, I.O., Sokolova, T.V., Vlasova, Y.A., Furaev, V.V., Rychkova, M.P., and Avrova, N.F., Neurochem. Res., 2014, vol. 39, pp. 2262–2275.

    Article  CAS  PubMed  Google Scholar 

  24. Namura, S., Iihara, K., Takami, S., Nagata, I., Kikuchi, H., Matsushita, K., Moskowitz, M.A., Bonventre, J.V., and Alessandrini, A., Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 11569–11574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu, K., Liang, C.L., Liliang, P.C., Yang, S.-H., Cho, C.L., Weng, H.C., Tsai, Y.-D., Wang, K.W., and Chen, H.J., J. Neurochem., 2010, vol. 114, pp. 237–246.

    CAS  PubMed  Google Scholar 

  26. Zakharova, I.O., Sokolova, T.V., Vlasova, Y.A., Bayunova, L.V., Rychkova, M.P., and Avrova, N.F, Int. J. Mol. Sci., 2017, vol. 18, no. 1:216.

    Article  PubMed Central  Google Scholar 

  27. Kulebyakin, K., Karpova, L., Lakonsteva, E., Krasavin, M., and Boldyrev, A., Amino Acids, 2012, vol. 43, pp. 91–96.

    Article  CAS  PubMed  Google Scholar 

  28. Luo, Y. and DeFranco, D.B., J. Biol. Chem., 2006, vol. 281, pp. 16436–16442.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Avrova.

Additional information

Original Russian Text © I.I. Zorina, L.V. Bayunova, I.O. Zakharova, N.F. Avrova, 2018, published in Neirokhimiya, 2018, Vol. 35, No. 1, pp. 101–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorina, I.I., Bayunova, L.V., Zakharova, I.O. et al. The Dependence of the Protective Effect of Insulin on Its Concentration and Modulation of ERK1/2 Activity under the Conditions of Oxidative Stress in Cortical Neurons. Neurochem. J. 12, 111–116 (2018). https://doi.org/10.1134/S1819712417040110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712417040110

Keywords

Navigation