Skip to main content
Log in

Effect of Prenatal Hypoxia on Cholinesterase Activity in Blood Serum of Rats

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Analysis of acetylcholine- and butyrylcholinesterase (AChE, BChE) in blood serum of rats of different ages demonstrated that their activities significantly decrease during ageing. Moreover, in mature rats (5 and 8 months) subjected to prenatal hypoxia during the period of active formation of the brain (E14, 7% O2, 3 h) there was a two-fold decrease in the activity both of AChE and BChE. Prenatal hypoxia at a later stage of pregnancy (E18) also resulted in decreased activity of BChE in the blood serum of mature rats while AChE activity was significantly higher than in controls. Levels of cholinesterase activity in blood serum also correlated with the motor activity of rats. In active mature rats, AChE activity was, on average, 10% higher and BChE, 21% higher than in passive rats. Administration of a natural antioxidant L-carnitine or a synthetic tyrosine kinase inhibitor imatinib (gleevec) to animals resulted in an increase in the activity of both cholinesterases in the serum. The data obtained testify not only on the prolonged effects of prenatal stress on the cholinergic brain system reported by us earlier but also on the activities of AChE and BChE in blood serum which might affect not only motor and cognitive functions of animals but also their reactions to different types of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pick, M., Flores-Flores, C., and Soreq, H., Ann. NY Acad. Sci., 2004, vol. 1018, pp. 85–98.

    Article  PubMed  CAS  Google Scholar 

  2. Mora, F., Segovia, G., Del Arco, A., de Blas, M., and Garrido, P., Brain Res., 2012, vol. 1476, pp. 71–85.

    Article  PubMed  CAS  Google Scholar 

  3. Higley, M.J. and Picciotto, M.R., Curr. Opin. Neurobiol., 2014, vol. 29, pp. 88–95.

    Article  PubMed  CAS  Google Scholar 

  4. Nalivaeva, N.N. and Turner, A.J., Proteomics, 2001, vol. 1, no. 6, pp. 735–747.

    Article  PubMed  CAS  Google Scholar 

  5. Chatonnet, A. and Lockridge, O., Biochem J., 1989, vol. 260, no. 3, pp. 625–634.

  6. Johnson, G. and Moore, S.W., Neurochem. Int., 2012, vol. 61, no. 5, pp. 783–797.

    Article  PubMed  CAS  Google Scholar 

  7. Appleyard, M.E., Trends Neurosci., 1992, vol. 15, no. 12, pp. 485–490.

    Article  PubMed  CAS  Google Scholar 

  8. Halliday, A.C. and Greenfield, S.A., Protein Pept. Lett., 2012, vol. 19, pp. 165–72.

    Article  PubMed  CAS  Google Scholar 

  9. Parikh, K., Duysen, E.G., Snow, B., Jensen, N.S., Manne, V., Lockridge, O., and Chilukuri, N., J. Pharmacol. Exp. Ther., 2011, vol. 337, no. 1, pp. 92–101.

    Article  PubMed  CAS  Google Scholar 

  10. Li, B., Stribley, J.A., Ticu, A., Xie, W., Schopfer, L.M., Hammond, P., Brimijoin, S., Hinrichs, S.H., and Lockridge, O., J. Neurochem., 2000, vol. 75, no. 3, pp. 1320–1331.

    Article  PubMed  CAS  Google Scholar 

  11. Noureddine, H., Carvalho, S., Schmitt, C., Massoulié, J., and Bon, S., J. Biol. Chem., 2008, vol. 283, no. 30, pp. 20722–20732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zimmerman, G. and Soreq, H., J. Mol. Neurosci., 2006, vol. 30, no. 1–2, pp. 197–200.

    Article  PubMed  CAS  Google Scholar 

  13. Nalivaeva, N.N. and Turner, A.J., Lett. Pept. Sci., 1999, vol. 6, pp. 343–348.

    CAS  Google Scholar 

  14. Zhuravin, I.A., Nalivaeva, N.N., Kozlova, D.I., Kochkina, E.G., Fedorova, Y.B., and Gavrilova, S.I., Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2015, vol. 115, no. 12, pp. 110–117.

    Article  Google Scholar 

  15. Sáez-Valero, J., Sberna, G., McLean, C.A., and Small, D.H., J. Neurochem., 1999, vol. 72, no. 4, pp. 1600–1608.

    Article  PubMed  Google Scholar 

  16. Wessler, I., Kirkpatrick, C.J., and Racke, K., Pharmacol. Ther., 1998, vol. 77, pp. 59–79.

    Article  PubMed  CAS  Google Scholar 

  17. Kawashima, K., Fujii, T., Moriwaki, Y., and Misawa, H., Life Sci., 2012, vol. 91, nos. 21–22, pp. 1027–1032.

    Article  PubMed  CAS  Google Scholar 

  18. Kochkina, E.G., Plesneva, S.A., Zhuravin, I.A., Turner, A.J., and Nalivaeva, N.N., Zh. Evol. Biokhim. Fiziol., 2015, vol. 51, no. 2, pp. 95–102.

    PubMed  CAS  Google Scholar 

  19. Das, A., Kapoor, K., Sayeepriyadarshini, A.T., Dikshit, M., Palit, G., and Nath, C., Pharmacol. Res., 2000, vol. 42, no. 3, pp. 213–217.

    Article  PubMed  CAS  Google Scholar 

  20. Wright, C.I., Geula, C., and Mesulam, M.M., Ann. Neurol., 1993, vol. 34, no. 3, pp. 373–384.

    Article  PubMed  CAS  Google Scholar 

  21. Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M., and Altman, D.G., PLoS Biol., 2010, vol. 8, e1000412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nalivaeva, N.N., Makova, N.Z., Kochkina, E.G., John, D., Arutyunov, V.A., Kozina, L.S., Arutjunyan, A.V., and Zhuravin, I.A., Neurochem. J., 2011, vol. 5, no. 3, pp. 176–182.

    Article  CAS  Google Scholar 

  23. Bradford, M.M., Biochem. Anal., 1976, vol. 72, pp. 248–254.

    Article  CAS  Google Scholar 

  24. Dubrovskaya, N.M., Nalivaeva, N.N., Plesneva, S.A., Feponova, A.A., Turner, A.J., and Zhuravin, I.A., Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2009, vol. 59, no. 5, pp. 630–638.

    CAS  Google Scholar 

  25. Vasil’ev, D.S., Dubrovskaya, N.M., Tumanova, N.L., and Zhuravin, I.A., Ross. Fiziol. Zh. im. I.M. Sechenova, 2013, vol. 99, no. 11, pp. 1233–1239.

    PubMed  Google Scholar 

  26. Dubrovskaya, N.M., Vasil’ev, D.S., Tikhonravov, D.L., Tumanova, N.L., and Zhuravin, I.A., Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2017, vol. 67, no. 6, pp. 693–704.

    Google Scholar 

  27. Shaked, I., Zimmerman, G., and Soreq, H., Ann. NY Acad. Sci., 2008, vol. 1148, pp. 269–281.

    Article  PubMed  CAS  Google Scholar 

  28. Di Bari, M., Reale, M., Di Nicola, M., Orlando, V., Galizia, S., Porfilio, I., Costantini, E., D’Angelo, C., Ruggieri, S., Biagioni, S., Gasperini, C., and Tata, A.M., Int. J. Mol. Sci., 2016, vol. 17, no. 12, pii: E2009.

    Article  PubMed  CAS  Google Scholar 

  29. Eder, K.J., Köhler, H.R., and Werner, I., Environ. Toxicol. Chem., 2007, vol. 26, no. 6, pp. 1233–1242.

    Article  PubMed  CAS  Google Scholar 

  30. Pohanka, M., Talanta, 2014, vol. 119, pp. 412–416.

    Article  PubMed  CAS  Google Scholar 

  31. Gordon, C.J. and Fogelson, L., Neurotoxicol. Teratol., 1993, vol. 15, no. 1, pp. 21–25.

    Article  PubMed  CAS  Google Scholar 

  32. Dingova, D., Fazekas, T., Okuliarova, P., Strbova, J., Kucera, M., and Hrabovska, A., J. Alzheimer’s Dis., 2016, vol. 51, no. 3, pp. 801–813.

    Article  CAS  Google Scholar 

  33. Shenhar-Tsarfaty, S., Berliner, S., Bornstein, N.M., and Soreq, H., J. Mol. Neurosci., 2014, vol. 53, no. 3, pp. 298–305.

    Article  PubMed  CAS  Google Scholar 

  34. Carmona, G.N, Schindler, C.W., Shoaib, M., Jufer, R., Cone, E.J., Goldberg, S.R., Greig, N.H., Yu, Q.S., and Gorelick, D.A., Exp. Clin. Psychopharmacol., 1998, vol. 6, no. 3, pp. 274–279.

    Article  PubMed  CAS  Google Scholar 

  35. Qiao, Y., Han, K., and Zhan, C.G., Biochemistry, 2013, vol. 52, no. 37, pp. 6467–6479.

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki, K. and Okumura, Y., Arch. Biochem. Biophys., 2000, vol. 379, no. 2, pp. 344–352.

    Article  PubMed  CAS  Google Scholar 

  37. Iwasaki, T., Yoneda, M., Nakajima, A., and Terauchi, Y., Intern. Med. (Tokyo, Jpn.), 2007, vol. 46, no. 19, pp. 1633–1639.

    Article  Google Scholar 

  38. Santarpia, L., Grandone, I., Contaldo, F., and Pasanisi, F., J. Cachexia Sarcopenia Muscle, 2013, vol. 4, no. 1, pp. 31–39.

    Article  PubMed  Google Scholar 

  39. Zimmer, K.R., Lencina, C.L., Zimmer, A.R., and Thiesen, F.V., Int. J. Environ. Health Res., 2012, vol. 22, no. 3, pp. 279–286.

    Article  PubMed  CAS  Google Scholar 

  40. Boeck, A.T., Schopfer, L.M., and Lockridge, O., Biochem. Pharmacol., 2002, vol. 63, no. 12, pp. 2101–2110.

    Article  PubMed  CAS  Google Scholar 

  41. Dave, K.R. and Katyare, S.S., J. Endocrinol., 2002, vol. 175, no. 1, pp. 241–250.

    Article  PubMed  CAS  Google Scholar 

  42. Müller, L. and Pawelec, G., Brain, Behav., Immun., 2014, vol. 39, pp. 8–22.

    Article  CAS  Google Scholar 

  43. Bizon, J.L., Foster, T.C., Alexander, G.E., and Glisky, E.L., Front. Aging Neurosci., 2012, vol. 4, p. 19.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dubrovskaya, N.M. and Zhuravin, I.A., Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2008, vol. 58, no. 6, pp. 718–728.

    Google Scholar 

  45. Zhuravin, I.A, Tumanova, N.L., and Vasilev, D.S., Dokl. Akad. Nauk, 2009, vol. 425, no. 1, pp. 123–125.

    Google Scholar 

  46. Sergutina, A.V. and Rakhmanova, V.I., Bull. Exp. Biol. Med., 2014, vol. 157, no. 4, pp. 450–453.

    Article  PubMed  CAS  Google Scholar 

  47. Haider, S., Saleem, S., Perveen, T., Tabassum, S., Batool, Z., Sadir, S., Liaquat, L., Madiha, S., Age (Dordrecht, Neth.), 2014, vol. 36, no. 3, pp. 1291–1302.

    CAS  Google Scholar 

  48. Selmi, S., El-Fazaa, S., and Gharbi, N., Environ. Toxicol. Pharmacol., 2012, vol. 34, no. 3, pp. 753–760.

    Article  PubMed  CAS  Google Scholar 

  49. Ribas, G.S., Vargas, C.R., and Wajner, M., Gene, 2014, vol. 533, no. 2, pp. 469–476.

    Article  PubMed  CAS  Google Scholar 

  50. Kim, C.S. and Roe, C.R., Fundam. Appl. Toxicol., 1992, vol. 19, no. 2, pp. 222–227.

    Article  PubMed  CAS  Google Scholar 

  51. Tsakiris, T., Angelogianni, P., Tesseromatis, C., Tsakiris, S., Schulpis, K.H., Br. J. Sports Med., 2008, vol. 42, no. 5, pp. 367–372.

    Article  PubMed  CAS  Google Scholar 

  52. Ribas, G.S., Scherer, E.B., Ferreira, A.G., Schmitz, F., Wyse, A.T., Rodrigues, D., Nascimento, S., Garcia, S.C., Wajner, M., and Vargas, C.R., Clin. Biochem., 2012, vol. 45, nos. 1–2, pp. 77–81.

    Article  PubMed  CAS  Google Scholar 

  53. Kerridge, C., Belyaev, N.D., Nalivaeva, N.N., and Turner, A.J., J. Neurochem., 2014, vol. 130, no. 3, pp. 419–431.

    Article  PubMed  CAS  Google Scholar 

  54. Veith, C., Zakrzewicz, D., Dahal, B.K., Bálint, Z., Murmann, K., Wygrecka, M., Seeger, W., Schermuly, R.T., Weissmann, N., and Kwapiszewska, G., Thromb. Haemostasis, 2014, vol. 112, no. 6, pp. 1288–1303.

    Article  CAS  Google Scholar 

  55. Alvarez, A.R., Klein, A., Castro, J., Cancino, G.I., Amigo, J., Mosqueira, M., Vargas, L.M., Yévenes, L.F., Bronfman, F.C., and Zanlungo, S., FASEB J., 2008, vol. 22, no. 10, pp. 3617–3627.

  56. Chu, J., Lauretti, E., Craige, C.P., and Pratic, D., J. Alzheimer’s Dis., 2014, vol. 41, no. 3, pp. 729–737.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zhuravin.

Additional information

Published inRussian in Neirokhimiya, 2018, Vol. 35, No. 2, pp. 160–169.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, D.I., Kochkina, E.G., Dubrovskaya, N.M. et al. Effect of Prenatal Hypoxia on Cholinesterase Activity in Blood Serum of Rats. Neurochem. J. 12, 159–167 (2018). https://doi.org/10.1134/S1819712418020071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712418020071

Keywords

Navigation