Skip to main content
Log in

The Capability to Learn and Expression of the Insulin-Like Growth Factor II Gene in the Brain of Male Rats Whose Fathers Were Subjected to Stress Factors in the “Stress–Restress” Paradigm

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—We studied the capability to learn in a passive avoidance task and the rate of its extinction in male rats whose fathers were subjected to stress during the period of spermatogenesis using the “stress–restress” paradigm (a model of post-traumatic stress disorder). In the brain of trained and untrained rats, we studied the expression of genes encoding insulin-like growth factor II and H19, the expression of which is imprinted at the early stages of ontogeny. Experimental males exhibited impaired memory consolidation and accelerated extinction of a passive avoidance response. The expression of Igf2 was decreased in the hippocampus and neocortex of untrained male offspring of stressed fathers. The increased expression of the Igf2 and H19 genes was revealed in the hippocampus of male offspring of control fathers 20 h after training, whereas in the experimental rats, the expression of these genes did not alter. Our data show that the impairment of memory in male offspring of stressed fathers may be mediated by decreased expression of the Igf2 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yehuda, R., Halligan, S.L., and Bierer, L.M., J. Psychiatr. Res., 2001, vol. 35, pp. 261–270.

    Article  CAS  PubMed  Google Scholar 

  2. Scharf, M., Dev. Psychopathol., 2007, vol. 19, pp. 603–622.

    Article  PubMed  Google Scholar 

  3. Yehuda, R., Daskalakis, N.P., Lehrner, A., Desarnaud, F., Bader, H.N., Makotkine, I., Flory, J.D., Bierer, L.M., and Meaney, M.J., Am. J. Psychiatry, 2014, vol. 171, pp. 872–880.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rodgers, A.B., Morgan, C.P., Bronson, S.L., Revello, S., and Bale, T.L., J. Neurosci., 2013, vol. 33, pp. 9003–9012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dietz, D.M., Lapiant, Q., Watts, E.L., Hodes, G.E., Russo, S.J., Feng, J., Oosting, R.S., Vialou, V., and Nestler, E.J., Biol. Psychiatry, 2011, vol. 70, pp. 408–414.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Harker, A., Carroll, C., Raza, S., Kolba, B., and Gibb, R., Neuroscience, 2018, vol. 388, pp. 474–485.

    Article  CAS  PubMed  Google Scholar 

  7. Short, A.K., Fennell, K.A., Perreau, V.M., Fox, A., O’Bryan, M.K., Kim, J.H., Bredy, T.W., Pang, T.Y., and Hannan, A.J., Transl. Psychiatry, 2016, vol. 6, e837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, D.Y., Stern, S.A., Garcia-Osta, A., Saunier-Rebori, B., Pollonini, G., Bambah-Mukku, D., Blitzer, R.D., and Alberini, C.M., Nature, 2011, vol. 469, no. 7331, pp. 491–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sasaki, H., Ishihara, K., and Kato, R.J., Biochemistry, 2000, vol. 127, pp. 711–715.

    CAS  Google Scholar 

  10. Tycko, B. and Morison, I.M., J. Cell Physiol., 2002, vol. 192, pp. 245–258.

    Article  CAS  PubMed  Google Scholar 

  11. Kohtz, A., Pollonini, G., Riccio, A., and Alberini, C.M., PLoS One, 2015, vol. 10, e0141078.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yehuda, R., Ann. N.Y. Acad. Sci., 2009, vol. 1179, pp. 56–59.

    Article  CAS  PubMed  Google Scholar 

  13. Ordyan, N.E., Smolenskiy, I.V., Pivina, S.G., Akulova, V.K., and Rakitskaya, V.V., Neurosci. Behav. Physiol., 2014, vol. 44, pp. 657–663.

    Article  Google Scholar 

  14. Livak, K.J. and Schmittgen, T.D., Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  15. Bergman, D., Halje, M., Nordin, M., and Engstrom, W., Gerontology, 2013, vol. 59, pp. 240–249.

    Article  CAS  PubMed  Google Scholar 

  16. Ho-Shing, O. and Dulac, C., Curr. Opin. Behav. Sci., 2019, vol. 25, pp. 66–76.

    Article  Google Scholar 

  17. Russo, V.C., Goldin, A., Feldman, E.L., and Werther, G.A., Endocr. Rev., 2005, vol. 26, pp. 916–943.

    Article  CAS  PubMed  Google Scholar 

  18. Stern, S.A., Chen, D.Y., and Alberini, C.M., Learn. Memory, 2014, vol. 21, pp. 556–563.

    Article  CAS  Google Scholar 

  19. Steinmetz, A.B., Johnson, S.A., Iannitelli, D.E., Pollonini, G., and Alberini, C.M., Neurobiol. Aging, 2016, vol. 44, pp. 9–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pascual-Lucas, M., Viana da Silva, S., Di Scala, M., Garcia-Barroso, C., González-Aseguinolaza, G., Mulle, C., Alberini, C.M., Cuadrado-Tejedor, M., and Garcia-Osta, A., EMBO Mol. Med., 2014, vol. 6, pp. 1246–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nordin, M., Bergman, D., Halje, M., Ehgstrom, W., and Ward, A., Cell Prolifer., 2014, vol. 47, pp. 189–199.

    Article  CAS  Google Scholar 

  22. Gabory, A., Jammes, H., and Dandolo, L., BioEssays, 2010, vol. 32, pp. 473–480.

    Article  CAS  PubMed  Google Scholar 

  23. Ratajczak, M.Z., Folia Histochem. Cytobiol., 2012, vol. 50, pp. 171–179.

    Article  CAS  PubMed  Google Scholar 

  24. Smith, G., Mungall, A.J., Griffiths-Jones, S., Smith, P., Buery, D., Matthews, L., Rogers, J., Pask, A.J., Shaw, G., Vandeberg, J.L., McCarrey, J.R., the SAVOIR Consortium, Renfree, M.B., Reik, W., and Dunhan, I., Nat. Genet., 2008, vol. 40, pp. 971–996.

    Article  PubMed  Google Scholar 

  25. Farzi-Molan, A., Babashah, S., Bakhshinejad, B., Atashi, A., and Fakhr Taha, M., Cell Biol. Int., 2018, vol. 42, pp. 940–948.

    Article  CAS  PubMed  Google Scholar 

  26. Chan, J.C., Nugent, B.M., and Bale, Y.L., Biol. Psychiatry, 2018, vol. 83, pp. 886–894.

    Article  PubMed  Google Scholar 

  27. Okada, Y. and Yamaguchi, K., Cell. Mol. Life Sci., 2017, vol. 74, pp. 1957–1967.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Q., Yan, W., and Duan, E., Nature Rev., 2016, vol. 17, pp. 733–743.

    Article  CAS  Google Scholar 

  29. Yuan, S., Schuster, A., Tang, C., Yu, T., Ortogero, N., Bao, J., Zheng, H., and Yan, W., Development, 2016, vol. 143, pp. 635–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mychasiuk, R., Harker, A., Ilnytskyy, S., and Gibb, R., Neuroscience, 2013, vol. 241, pp. 100–105.

    Article  CAS  PubMed  Google Scholar 

  31. Pedone, H.V., Pikaart, M.J., Cerrato, F., Vernucci, M., Undagro, P., Bruni, C.B., and Riccio, A., FEBS Lett., 1999, vol. 458, pp. 45–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18–015–00186 (PI, Ordyan N.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Ordyan.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Ethical approval. All experiments with animals were performed in accordance with the EU Directive 2010/63/EU for the care and use of animals for experimental procedures and the rules of “Guide for the Care and Use of Laboratory Animals”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordyan, N.E., Malysheva, O.V., Akulova, V.K. et al. The Capability to Learn and Expression of the Insulin-Like Growth Factor II Gene in the Brain of Male Rats Whose Fathers Were Subjected to Stress Factors in the “Stress–Restress” Paradigm. Neurochem. J. 14, 191–196 (2020). https://doi.org/10.1134/S1819712420020075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712420020075

Keywords:

Navigation