Skip to main content
Log in

Shear structural paragenesis and its role in continental rifting of the East Asian margin

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The spatial-genetic relationships between transit fault systems of the East Asian global shear zone (EAGSZ) are analyzed. It is established that the EAGSZ internal structure between the Okhotsk and South China seas is identical to that of world-known natural and experimental shear zones, which confirms its development as an integral structure. The structural-kinematic analysis included the Tan-Lu-Sikhote-Alin (TS) system of left-lateral strike-slip faults (NNE 25°–30°) and the Bohai-Amur (BA) system of updip-strike-slip faults (NE 50°–70°). It is shown that these systems were formed as structural parageneses during two stages. The first and shear-thrust stage (Jurassic-Early Cretaceous) was marked by general NNW-oriented compression with the formation of the TS system of left-lateral strike-slip faults and their structural parageneses (compression structures) such as the BA system of updip-thrusts. The second, strike-slip-pull apart stage (Late Cretaceous-Cenozoic) was characterized by SE-directed tangential compression, which was generated by the SW left-lateral displacement of the continental crust along the Central Sikhote-Alin deep-seated fault. In such dynamic settings, the updip-thrust kinematics of the BA system gave way to that of left-lateral strike-slip faults. The strike-slip faults were formed in the transtension regime (shear with extension), which determined the development of pull-apart structures, where the left-lateral shear extension component played the decisive role. Simultaneously, the extension involved the Tan-Lu strike-slip fault with the formation of the rift valley and the discrete development of sedimentary basins along the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Argentov, G. S. Gnibidenko, A. A. Popova, and S. V. Potap’ev, Deep Structure of Primorye (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  2. G. L. Bernshtein, V. S. Volokhin, I. F. Gorbachev, et al., “Geological structure of the Zeya-Bureya depression from results of regional geological-geophysical works,” in Geophysical Studies during Solution of Geological Problems of East Siberia (Nedra, Moscow, 1970), pp. 271–300 [in Russian].

    Google Scholar 

  3. V. S. Burtman, A. V. Luk’yanov, A. V. Peive, and S. V. Ruzhentsev, “Faults and horizontal movements of the Earth’s crust,” Tr. Geol. Inst. Akad. Nauk SSSR 80, 29–43 (1963).

    Google Scholar 

  4. V. G. Varnavsky and Yu. F. Malyshev, “East Asian graben belt,” Tikhookean. Geol., No. 3, 3–13 (1986).

    Google Scholar 

  5. V. G. Varnavsky, V. V. Krapiventseva, G. L. Kirillova, and V. E. Kuznetsov, “Gas prospects of riftogenic structure of the Lobei-Birofel chain of the Tan-Lu fault system, Amur region,” Tikhookean. Geol. 16(2), 93–102 (1997).

    Google Scholar 

  6. P. S. Voronov, Essays on Regularities in the Morphology of the Earth’s Global Topography (Nauka, Leningrad, 1968) [in Russian].

    Google Scholar 

  7. Geological Map of the Khabarovsk Krai and Amur District. 1: 2500000, Ed. by L. I. Krasnyi (VSEGEI, Leningrad, 1991) [in Russian].

    Google Scholar 

  8. V. V. Golozubov, G. L. Amel’chenko, Dong Wu Li, E. B. Volynets, and V. S. Markevich “Evolution of the Alchan Epicontinental Basin of Cretaceous Age (Northwestern Primorie),” Geotectonics 36, 215–226 (2002).

    Google Scholar 

  9. V. V. Golozubov, Dong U. Li, S. A. Kazatkin, and B. I. Pavlyutkin, Palynological evidence for dating Jurassic-Cretacceous boundary sediments in the Bureya Basin, Russian Far East, Russ. J. Pac. Geol. 3, 284–293 (2009).

    Article  Google Scholar 

  10. G. L. Zvyagintsev, in Gold Associations of the Far East (Nauka, Moscow, 1969), pp. 7–35 [in Russian].

    Google Scholar 

  11. B. A. Ivanov, “Central Sikhote-Alin fault (strike-slip),” Dokl. Akad. Nauk SSSR 138(4), 43–47 (1961).

    Google Scholar 

  12. B. A. Ivanov, Central Sikhote-Alin Fault (Dal’nevost. kn. izd-vo, Vladivostok, 1972) [in Russian].

    Google Scholar 

  13. V. B. Kaplun, “Geoelectric section of the lithosphere in the central part of the Middle Amur sedimentary basin (Far East) based on the magnetotelluric sounding data,” Russ. J. Pac. Geol. 3(2), 185–196 (2009).

    Article  Google Scholar 

  14. G. L. Kirillova, Structure of Cenozoic Sedimentary Basins in the East Asia-Pacific Junction Zone (Vladivostok, 1992) [in Russian].

    Google Scholar 

  15. G. L. Kirillova, “Comparative characteristics of intracontinental rift basins of East Asia: Songliao and Amur-Zeya,” Tikhookean. Geol. 13(6), 33–54 (1994).

    Google Scholar 

  16. G. L. Kirillova, Liu Zhaojun, Van Symin, et al., “Stratigraphic correlation of the upper Mesozoic-Cenozoic sequences of the Middle Amur (Sanjiang) sedimentary basin,” Tikhookean. Geol. 15(6), 81–102 (1996).

    Google Scholar 

  17. M. G. Leonov and S. Yu. Kolodyazhnyi, “Structuralkinematic ensembles and some specific post-Archean geodynamic features of the Karelian Massif (Baltic Shield),” Geotectonics 36(5), 357–380 (2002).

    Google Scholar 

  18. Yu. G. Leonov, “Peculiarities of structure and evolutionon of some types of sedimentary basins,” in Sedimentary Basins: Study Technique, Structure, and Evolution, Ed. by Yu. G. Leonov and Yu. A. Volozh (Nauch. mir, Moscow, 2004), pp. 38–60.

    Google Scholar 

  19. F. A. Letnikov, V. B. Savel’eva, and S. P. Bol’shev, Petrology, Geochemistry, and Fluid Regime of Tectonites (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  20. A. V. Luk’yanov, Structural Manifestations of Horizontal Movements of the Earth’s Crust (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  21. T. V. Merkulova and Yu. F. Manilov, “On problem of structure of the southwestern part of the Middle Amur depression,” Tikhookean. Geol. 17(4), 116–120 (1998).

    Google Scholar 

  22. T. V. Merkulova and G. L. Kirillova, “Structure and petroleum prospects of the northern chain of the Tan Lu fault zone,” Tikhookean. Geol. 23(6), 55–75 (2004).

    Google Scholar 

  23. T. V. Merkulova and G. L. Kirillova, “Main fault systems,” in The Middle Amur Sedimentary Basin: Geological Structure, Geodynamics, and Fuel-Energetic Resources, Ed. by G. L. Kirillova (DVO RAN, Vladivostok, 2009) [in Russian].

    Google Scholar 

  24. B. A. Natal’in and S. G. Chernysh, “Types and history of deformation of the sedimentary fill and basement of the Middle Amur depression,” Tikhookean. Geol. 11(6), 43–61 (1992).

    Google Scholar 

  25. B. A. Natal’in and S. N. Alekseenko, “Structure of Cretaceous Fold Basement of MOB,” in Middle Amur Sedimentary Basin: Geological Structure, Geodynamics, and Fuel-Energetic Resources, Ed. by G. L. Kirillova (DVO RAN, Vladivostok, 2009) [in Russian].

    Google Scholar 

  26. P. N. Nikolaev, Technique of Tectonodynamic Analysis (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  27. Sedimentary Basins: Methods of Study, Structure, and Evolution, Ed. by Yu. G. Leonov and Yu. A. Volozh (Nauch. mir, Moscow, 2004) [in Russian].

    Google Scholar 

  28. “Sedimentary basins of East Russia,” in Middle Amur Sedimentary Basin: Geological Structure, Geodynamics, and Fuel-Energetic Resources, Ed. by A. I. Khanchuk and G. L. Kirillova (DVO RAN, Vladivostok, 2009), p. 421 [in Russian].

  29. A. P. Paklin, “Junction of Central and Meridional faults and style of movement along them,” Inform. Sb. PTGU, No. 4, 7–13 (1963).

    Google Scholar 

  30. A. N. Perestoronin and E. P. Razvozzhaeva, “The system of Cenozoic depressions in the Amur and Primorye regions: the structure, tectonic position, and geodynamic interpretation,” Russ. J. Pac. Geol. 5(2), 139–154 (2011).

    Article  Google Scholar 

  31. A. A. Pek, Dynamics of Juvenile Solutions (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  32. Role of Shear Tectonics in Structure of Lithosphere of the Earth and Terrestrial Planets, Ed. by P. S. Voronov (Nauka, St. Petersburg, 1997) [in Russian].

    Google Scholar 

  33. A. K. Sedykh, Cenozoic Riftogenic Depressions of Primorye (Dal’nauka, Vladivostok, 2008) [in Russian].

    Google Scholar 

  34. K. Zh. Seminskii, Internal structure of Continental Fault Zones. Tectonic Aspect (Izd-vo SO RAN, fil. “Geo”, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  35. V. N. Silant’ev, “Fudzin-Iman strike-slip,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 2, 39–49 (1963).

    Google Scholar 

  36. S. S. Stoyanov, Formation Mechanism of Extensional Faults (Nedra, Moscow, 1977) [in Russian].

    Google Scholar 

  37. Structure and Petroleum Potential of the Western Part of the Middle Amur Depression (Vladivostok, 1999) [in Russian].

  38. V. P. Utkin, “Shear zones of Central Sikhote-Alin,” Dokl. Akad. Nauk SSSR 229(4), 955–958 (1976).

    Google Scholar 

  39. V. P. Utkin, “East Asian global shear zone, volcanic belt, and marginal seas,” Dokl. Akad. Nauk SSSR 240(2), 400–403 (1978).

    Google Scholar 

  40. V. P. Utkin, Shear Dislocations and Methods of their Study (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  41. V. P. Utkin, “Geodynamic conditions of tectonomagmatic activation of Sikhote-Alin,” Tikhookean. Geol., No. 6, 37–47 (1984).

    Google Scholar 

  42. V. P. Utkin, “Geodynamic conditions of formation of continental margin volcanic belts,” in Volcanic Belts of East Asia (Nauka, Moscow, 1984), pp. 328–352 [in Russian].

    Google Scholar 

  43. V. P. Utkin and A. K. Sedykh, “Geodynamics of structural formation of coal fields by the example of Primorye,” Dokl. Akad. Nauk SSSR, No. 35, 1199–1204 (1984).

    Google Scholar 

  44. V. P. Utkin, “Extenstional geodynamics of the Earth’s crust in the Asia-Pacific transition zone,” Geotektonika, No. 1, 73–87 (1985).

    Google Scholar 

  45. V. P. Utkin, “Shear dislocations as geodynamic process that determined the structure of the Pacific Asian margin,” in Pacific Asian Margin. Geology, Ed. by A. D. Shcheglov (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  46. V. P. Utkin, Shear Dislocations, Magmatism, and Ore Formation (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  47. V. P. Utkin, A. V. Oleinikov, and P. L. Nevolin, “Geological criteria for Cenozoic and modern seismoactive faults of Primorye and southern Khabarovsk krai,” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, Nos. 3–4, 130–133 (1992).

    Google Scholar 

  48. V. P. Utkin, “Global shear systems and horizontal drift of continents,” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 4, 23–37 (1994).

    Google Scholar 

  49. V. P. Utkin, “Horst-accretionary systems, rift-graben and volcanic belts of southern Russian Far East. Paper 1. Horst-accretionary systems and rift-grabens,” Tikhookean. Geol. 15(6), 44–72 (1996).

    Google Scholar 

  50. V. P. Utkin, “Structure, geochronology, and structuraldynamic conditions of the vertical development of the East Sikhote-Alin magma-metallogenic belt,” Dokl. Eart Sci. 405(8), 1136–1140 (2005).

    Google Scholar 

  51. V. P. Utkin, “Azimuthal reorganizations of structural patterns in the Primorye region as reflection of changes in geodynamic settings of the East Asian margin,” Dokl. Earth Sci. 422(7), 1028–1031 (2008).

    Article  Google Scholar 

  52. V. P. Utkin, “Rotation nature of tectogenesis of continental margins and breakdown of the Laurasian and Gondwanan supercontinents,” Dokl. Earth Sci. 416(7), 1000–1003 (2007).

    Article  Google Scholar 

  53. V. P. Utkin, “Shear destruction of the East Asian margin and its role in the formation of volcano-plutonic belts, epicontinental sedimentary basins, and marginal seas,” Dokl. Earth Sci. 426(6), 786–790 (2009).

    Google Scholar 

  54. G. A. Shatkov, A. O. Babaev, V. A. Maksimovskii, and V. V. Puring, “Taphrogenic complex of the Amur-Zeya depression and its ore prospects,” Tikhookean. Geol., No. 3, 54–67 (1984).

    Google Scholar 

  55. Sherman, S.I. and Yu. I. Dneprovskii, Stress Fields of the Earth’s Crust and Geological-Structural Methods of their Study (Nauka, Novosibirsk, 1989).

    Google Scholar 

  56. S. I. Sherman, K. Zh. Seminskii, S. A. Bornyakov, et al., Faulting in the Lithosphere. Shear Zones (Nauka, SO, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  57. V. Yaroshevsky, Fault and Fold Tectonics (Nedra, Moscow, 1981) [in Russian].

    Google Scholar 

  58. L. Aiming, M. Takao, and W. Tianfeng, “Tectonic characteristics of the central segment of the Tancheng-Lujiang fault zone, Shandong peninsula, eastern China,” Tectonophysics 293, 85–104 (1998).

    Article  Google Scholar 

  59. C. R. Allen, “Circum-Pacific faulting in the Philippines-Taiwan region,” J. Geophys. Res. 67(12), 4795–4812 (1962).

    Article  Google Scholar 

  60. E. M. Andersen, The Dynamics of Faulting (Oliver and Boyd, Edinburg, 1951).

    Google Scholar 

  61. N. Christie-Blick and K. T. Biddle, “Deformation and basin formation along strike-slip faults,” in Strike-Slip Deformation, Basin Formation, and Sedimentation, Ed. by K. T. Biddle and N. Christie-Blick, SEPM. Spec. Publ. 37, 1–34 (1985).

    Chapter  Google Scholar 

  62. H. Cloos, “Experimente Zur Inneren Tektonik,” Zentralblatt Mineral. Geol. Paleantol. 12, 609–621 (1928).

    Google Scholar 

  63. E. Cloos, “Experimental analysis of fracture patterns,” Geology 66, 241–256 (1955).

    Google Scholar 

  64. J. C. Crowell, “Origin of Late Cenozoic basins in southern California,” in Tectonics and Sedimentation, Ed. by W. R. Dickinson, SEPM Spec. Publ. 22, 190–204 (1974).

    Google Scholar 

  65. Geological Map of the Amur Region and Adjacent Areas. 1: 2500000, Ed. by L. I. Krasnyi (VSEGEI; Amurgeolkom; Mingeo KNR; Upravl. geol. prov. Kheiluntszyan, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  66. Don Lirong, Li Wei, and Fang Xiang, “Genetic classification and distribution characteristics of continental petroleum systems in China,” Petrol. Explor. Develop. 23(1), 92–98 (1996).

    Google Scholar 

  67. Lou Qun, Bai Xinhua, and Lio Xiaodong, “Fill sequence and its petroleum geology significance in secondary Sag in Tangyuan fault-depression,” Xinjland Petrol. Geol. 19(2), 1–7 (1998).

    Google Scholar 

  68. Ma Li, Yang Jiliang, and Ding Zhengyan, “Songliao basin-an intracratonic continental sedimentary basin of combination type, in Chinese sedimentary basins,” (Elsevier Science Publ., 1989), pp. 77–87.

    Google Scholar 

  69. H. E. Mckinstry, “Shears of Second Order,” Am. J. Sci. 251, 401–414 (1953).

    Article  Google Scholar 

  70. J. D. Moody and M. J. Hill, “Wrench-fault tectonics,” Geology 67(9), 1207–1246 (1956).

    Google Scholar 

  71. C. K. Morley, “Extension, detachments, and sedimentation in continental rifts (with particular to east Africa),” Tectonics 8(6), 1175–1192 (1989).

    Article  Google Scholar 

  72. H. Ramberg, “Strain distribution and geometry of folds,” Geol. Inst. Univ. Uppsala Bull. 42, 3–20 (1963).

    Google Scholar 

  73. W. Ridel, “Zur mechanik geologischer Brucher-Scheinungen,” Z. Min. Geol. Paleontol: Abhan., 351–368 (1929).

    Google Scholar 

  74. J. S. Tchalenko and N. N. Ambraseys, “Structural analysis of the Dasht-E Bayaz (Iran) earthquake fractures,” Geol. Soc. Am. Bull. 81(1), 41–60 (1970).

    Article  Google Scholar 

  75. The Tancheng-Lujiang Wrench Fault System, Ed. by J. W. Xu (John Wiley and Sons, Chichester, 1993).

    Google Scholar 

  76. V. P. Utkin, “Wrench faults of Sikhote-Alin and accretionary and destructive types of fault dislocation in the Asia-Pacific transition zone,” in The Tancheng-Lujiang Wrench Fault System, Ed. by J. W. Xu (John Wiley and Sons, Chichester, 1993), pp. 225–237.

    Google Scholar 

  77. J. W. Xu, G. Zhu, W. Tong, et al., “Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the north-west of the Pacific Ocean,” Tectonophysics 134(4), 273–310 (1987).

    Article  Google Scholar 

  78. Zhang Jiazhen, “Huabei-Bohaiwan basin,” in ESCAP Atlas of Stratigraphy IV. Stratigraphic Correlation between Sedimentary Basins of the ESCAP Region. Vol 10. People’s Republic of China. Mineral Resources Development Series (United Nations, New York, 1985), no. 52, pp. 22–27.

    Google Scholar 

  79. Zhao Jiongkun, You Youguang, and Zhou Xigi, “Subei South sea basin,” in ESCAP Atlas of Stratigraphic Correlation between Sedimentary Basins of the ESCAP region. Vol. 10. Peoples Republic of China. Mineral Resources Development (United Nations, New York, 1985), no. 52, pp. 28–34.

    Google Scholar 

  80. Kongwei Wang, Shoutian Chen, and Ligang Lui, “Characteristics of transmission fault belt and its petroleum geological significance in the Tertiary basin of east part of Heilongjiang province,” Petrol. Geol. Oil Field Develop. Daqing 17(4), 1–3 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Utkin.

Additional information

Original Russian Text © V.P. Utkin, 2013, published in Tikhookeanskaya Geologiya, 2013, Vol. 32, No. 3, pp. 32–54.

In fond memory of my late teacher Boris Alekseevich Ivanov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utkin, V.P. Shear structural paragenesis and its role in continental rifting of the East Asian margin. Russ. J. of Pac. Geol. 7, 167–188 (2013). https://doi.org/10.1134/S181971401303007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181971401303007X

Keywords

Navigation