Skip to main content
Log in

Ultrastructural and gene-expression changes in the calcium regulation system of rat skeletal muscles under exhausting exercise

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The expression of genes responsible for the synthesis of essential proteins regulating the calcium-ion balance and ultrastructural characteristics of fast-twitch (m. extensor digitorum longus, EDL) and slow-twitch (m. soleus, SOL) skeletal muscles under prolonged exercise were studied in an experimental model of forced-swimming rats. A day after the end of the exercise, no significant changes in any of the five investigated genes were revealed in the SOL. A few triad elements (T-tubules and cisternae of sarcoplasmic reticulum) were revealed. A small number of excitation-contraction coupling (ECC) structures in the control and a slight increase in their amount after exercises were noticed. Polymorphism and mitochondrial defects within SOL muscles indicate the importance of these structures in the regulation of calcium balance. In EDL muscles, adaptation mechanisms are aimed mainly at pumping Ca2+ ions to the sarcoplasmic reticulum, where the main calcium buffer is calsequestrin. Expression of SERCA1 gene increased by an order of magnitude, and that of CASQ1 increased by three times. Electron microscopy showed a major role of triads in the maintenance of calcium homeostasis in the EDL muscles, as well as a greater destruction of these muscles compared to SOL after exhausting exercise. The high level of triads and a possible activation of the CICR (calcium-induced calcium release) mechanism in fast-twitch muscles can cause damage to them during exhausting exercise. Adaptation of SOL muscles is associated with structural rearrangements of the mitochondrial apparatus, while adaptation of the EDL muscles is caused by calcium removal from the sarcoplasm with Ca-ATPase and its retention in the sarcoplasmic reticulum by calsequestrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

DHPR:

dihydropyridine receptors

RT-qPCR:

real-time quantitative reverse transcription polymerase chain reaction

RYR:

ryanodine receptor

SR:

sarcoplasmic reticulum

EMC:

electromechanical coupling

CICR:

Ca2+-induced Ca2+ release

DICR:

depolarization-induced Ca2+ release

EDL:

m. extensor digitorum longus (fast (white) skeletal muscles)

SOL:

m. soleus (slow (red) skeletal muscles)

References

  • Allen, D.G., Lamb, G.D., and Westerblad, H., Skeletal muscle fatigue: cellular mechanisms, Physiol. Rev., 2008, vol. 88, pp. 287–332.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, C.L., Jensen, J.L., and Orntoft, T.F., Normalization of real-time quantitative reverse transcription–PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res., 2004, vol. 64, pp. 5245–5250.

    CAS  PubMed  Google Scholar 

  • Angelova, P.R., Baev, A.Y., Berezhnov, A.V., and Abramov, A.Y., Role of inorganic polyphosphate in mammalian cells: from signal transduction and mitochondrial metabolism to cell death, Biochem. Soc. Trans., 2016, vol. 44, pp. 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Baumert, P., Lake, M.J., Stewart, C.E., Drust, B., and Erskine, R.M., Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing, Eur. J. Appl. Physiol., 2016, vol. 116, pp. 1595–1625.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, A.J., Yamada, T., Rassier, D.E., Andersson, D.C., Westerblad, H., and Lanner, J.T., Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery, J. Physiol., 2016, vol. 594, no. 18, pp. 5149–5160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debold, E.P., Potential molecular mechanisms underlying muscle fatigue mediated by reactive oxygen and nitrogen species, Front. Physiol., 2015, vol. 6, pp. 239.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durham, W.J., Aracena-Parks, P., Long, C., Rossi, A.E., Goonasekera, S.A., Boncompagni, S., Galvan, D.L., Gilman, C.P., Baker, M.R., Shirokova, N., Protasi, F., Dirksen, R., and Hamilton, S.L., RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 Knockin Mice, Cell, 2008, vol. 133, pp. 53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ean, B., Carson, B.P., Garcia-Roves, P.M., Chibalin, A.V., Sarsfield, F.M., Barron, N., McCaffrey, N., Moyna, N.M., Zierath, J.R., and O’Gorman, D.J., Exercise intensitydependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle, J. Physiol., 2010, vol. 588, pp. 1779–1790.

    Article  Google Scholar 

  • Endo, M., Calcium-induced calcium release in skeletal muscle, Physiol. Rev., 2009, vol. 89, pp. 1153–1176.

    Article  CAS  PubMed  Google Scholar 

  • Ferraro, E., Giammarioli, A.M., Chiandotto, S., Spoletini, I., and Rosano, G., Exercise-induced skeletal muscle remodeling and metabolic adaptation: redox signaling and role of autophagy, Antioxid. Redox. Signal., 2014, vol. 21, pp. 154–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredsted, A., Gissel, H., Madsen, K., and Clausen, T., Causes of excitation-induced muscle cell damage in isometric contractions: mechanical stress or calcium overload?, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 292, pp. 2249–2258.

    Article  Google Scholar 

  • Georgiev, G.P. and Mant’eva, V.L., Informational and ribosomal RNA, of chromosome-nucleolar apparatus, methods of separating, and nucleotide composition, Biokhimiya, 1962, vol. 23, no. 5, pp. 949–953.

    Google Scholar 

  • Györke, S. and Palade P., Calcium-induced calcium release in crayfish skeletal muscle, J. Physiol., 1992, vol. 457, pp. 195–210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Györke, S. and Palade, P., Ca(2+)-dependent negative control mechanism for Ca(2+)-induced Ca2+ release in crayfish muscle, J. Physiol., 1994, vol. 476, pp. 315–322.

    Article  PubMed  PubMed Central  Google Scholar 

  • He, F., Li, J., Liu, Z., Chuang, C.C., Yang, W., and Zuo, L., Redox mechanism of reactive oxygen species in exercise, Front. Physiol., 2016, vol. 7, p. 486.

    PubMed  PubMed Central  Google Scholar 

  • Hidalgo, C., Donoso, P., and Carrasco, M.A., The ryanodine receptors Ca2+ release channels: cellular redox sensors?, IUBMB Life, 2005, vol. 57, pp. 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C.C., Wang, T., Tung, Y.T., and Lin, W.T., Effect of exercise training on skeletal muscle SIRT1 and PGC-1α expression levels in rats of different age, Int. J. Med. Sci., 2016, vol. 13, pp. 260–270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssens, S., Jonkers, R.A., Groen, A.K., Nicolay, K., van Loon, L.J., and Prompers, J.J., Effects of acute exercise on lipid content and dietary lipid uptake in liver and skeletal muscle of lean and diabetic rats, Am. J. Physiol. Endocrinol. Metab., 2015, vol. 309, pp. 874–883.

    Google Scholar 

  • Kubasov, I.V., Arutunyan, R.S., and Matrosova, E.V., Transformation of the individual contractile responses within the tetanic train in fast-and slow-twitch rat skeletal muscles, J. Evol. Biochem. Physiol., 2016, vol. 52, no. 1, pp. 46–55.

    Article  CAS  Google Scholar 

  • Kubasov I.V., Arutunyan R.S., Matrosova E.V., and Kubasov, I.I., Characteristics of the individual contractile responses within the tetanic train in slow-twitch rat skeletal muscles during modulation of Ca2+ release from sarcoplasmic reticulum, J. Evol. Biochem. Physiol., 2016, vol. 52, no. 5, pp. 337–345.

    Google Scholar 

  • Marty, I. and Fauré, J., Excitation–contraction coupling alterations in myopathies, J. Neuromuscul. Dis., 2016, vol. 3, pp. 443–453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matrosova, E.V., Kubasov, I.V., Novozhilov, A.V., Tavrovskaya, T.V., Korf, E.A., Aratunyan, R.S., and Goncharov, N.V., The effect of intense physical activities on mechanografic characteristics of the fast-and slow-twitch rat skeletal muscle, Ross. Fiziol. Zh. im. I.M. Sechenova, 2017, vol. 103, no. 4, pp. 000–000.

    Google Scholar 

  • Michel, L.Y., Hoenderop, J.G., and Bindels, R.J., Calpain-3-mediated regulation of the Na+–Ca2+ exchanger isoform 3, Pflugers Arch., 2016, vol. 468, pp. 243–255.

    Article  CAS  PubMed  Google Scholar 

  • Morissette, M.P., Susser, S.E., Stammers, A.N., O’ Hara, K.A., Gardiner, P.F., Sheppard, P., Moffatt, T.L., and Duhamel, T.A., Differential regulation of the fiber type-specific gene expression of the sarcoplasmic reticulum calcium-ATPase isoforms induced by exercise training, J. Appl. Physiol., 2014, vol. 117, pp. 544–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeev, A.D., Zinchenko, V.P., Avdonin, P.V., and Goncharov, N.V., Toxic and signalling effects of the reactive oxygen species, Toxikol. Vestnik, 2014, vol. 2, pp. 22–27.

    Google Scholar 

  • Nasledov, G.A., Katina, I.E., and Kobzeva, M.A., On the functioning of the electromechanical coupling in various stages of reduction of the contracture, Ross. Fiziol. Zh. im. I.M. Sechenova, 2004, vol. 90, no. 3, pp. 327–338.

    CAS  PubMed  Google Scholar 

  • Nasledov, G.A., Katina, I.E., and Zhitnikova Y.V., Changes in the functioning of the electromechanical connection during tetanic contraction, Neurosci. Behav. Physiol., 2007, vol. 37, pp. 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, J., Cheng, A.J., Ørtenblad, N., and Westerblad, H., Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres, J. Physiol., 2014, vol. 592, pp. 2003–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novozhilov, A.V., Tavrovskaya, T.V., Voytenko, N.G., Maslova, M.N., Goncharov, N.V., and Morozov, V.I., The efficiency of the green tea extract in the experiment using two exercise models, Bull. Exp. Biol. Med., 2014, vol. 158, no. 9, pp. 327–332.

    Google Scholar 

  • Pfaffl, M.W., Horgan, G.W., and Dempfle, L., Relative Expression Software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic Acids Res., 2002, vol. 30, pp. e36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl, M.W., Tichopad, A., Prgomet, C., and Neuvians, T.P., Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations, Biotechnol. Lett., 2004, vol. 26, pp. 509–515.

    CAS  PubMed  Google Scholar 

  • Prinz, W.A., Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics, J. Cell. Biol., 2014, vol. 205, pp. 759–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi, A.E., Boncompagni, S., and Dirksen, R.T., Sarcoplasmic Reticulum-mitochondrial Symbiosis: Bidirectional Signaling In skeletal Muscle, Exerc. Sport. Sci. Rev., 2009, vol. 37, pp. 29–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubtsov, A.M., Ca-ATPase of the sarcoplasmic reticulum: molecular organization, functioning mechanism, and characteristics of regulation of activity, Usp. Biol. Nauk, 2005, vol. 45, pp. 235–268.

    CAS  Google Scholar 

  • Schiaffino, S. and Reggiani, C., Fiber types in mammalian skeletal muscles, Physiol. Rev., 2010, vol. 91, pp. 1447–1531.

    Article  Google Scholar 

  • Silver N., Best, S., Jiang, J., and Thein, S.L., Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR, BMC Mol. Biol., 2006, vol. 7, p. 33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Solesio, M.E., Demirkhanyan, L., Zakharian, E., and Pavlov, E.V., Contribution of inorganic polyphosphate towards regulation of mitochondrial free calcium, Biochim. Biophys. Acta, 2016, vol. 1860, pp. 1317–1325.

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol., 2002, vol. 3, no. 7, pp. research0034.1–research0034.11. PMID: 12184808.

    Google Scholar 

  • Witherspoon, J.W. and Meilleur, K.G., Review of RyR1 pathway and associated pathomechanisms, Acta. Neuropathol. Commun., 2016, vol. 4, p. 121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, F., Xiao, P., Chen, D., Xu, L., and Zhang, B., miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs, Plant. Mol. Biol., 2012, vol. 80, p. 75.

    Article  CAS  Google Scholar 

  • Yu, ZB., Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms, Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2013, vol. 29, pp. 525–533.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Goncharov.

Additional information

Original Russian Text © E.A. Korf, I.V. Kubasov, M.S. Vonsky, A.V. Novozhilov, A.L. Runov, E.V. Kurchakova, E.V. Matrosova, T.V. Tavrovskaya, N.V. Goncharov, 2017, published in Tsitologiya, 2017, Vol. 59, No. 6, pp. 434–446.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korf, E.A., Kubasov, I.V., Vonsky, M.S. et al. Ultrastructural and gene-expression changes in the calcium regulation system of rat skeletal muscles under exhausting exercise. Cell Tiss. Biol. 11, 371–380 (2017). https://doi.org/10.1134/S1990519X17050030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X17050030

Keywords

Navigation