Skip to main content
Log in

Intracellular viscosity: Methods of measurement and role in metabolism

  • Review
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

This review is devoted to the study of intracellular viscosity. Methods of intracellular viscosity measurement in cell populations and single cells are characterized and critically evaluated. Examples of intracellular viscosity assessment in a number of various cell types and intracellular organelles are presented. The main results of the in vitro and in vivo studies on the role of viscosity in metabolism are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson W.L., Heilbrunn L.V. 1960. Is protoplasm ever fluid? Quart. J. Microsc. Science. 101, p. 95103.

    Google Scholar 

  2. Luby-Phelps K. 1999. Cytoarchitecture and physical properties of cytoplasm: Volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192, 189–221.

    Article  Google Scholar 

  3. Crick F.H.C., Hughes A.F.W. 1950. The physical properties of cytoplasm: A study by means of the magnetic particle method. Exp. Cell. Res. 1, 37–80.

    Article  Google Scholar 

  4. Horowitz S.B., Moore L.C. 1974. The nuclear permeability, intracellular distribution, and diffusion of inulin in the amphibian oocyte. J. Cell Biol. 60(2), 405–415.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Keith A.D., Snipes W. 1974. Viscosity of cellular protoplasm. Science. 183(125), 666–668.

    Article  CAS  PubMed  Google Scholar 

  6. Mastro A.M., Babich M.A., Taylor W.D., Keith A.D. 1984. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc.Acad. Sci. USA. 81(11), 3414–3418.

    Article  CAS  Google Scholar 

  7. Lepock J.R., Chang K.H., Campbell S.D., Kruuv J. 1983. Rotational diffusion of tempone in the cytoplasm of Chinese hamster lung cells. Biophys. J. 44(3), 405–412.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Van Leeuwen M.R., Van Doorn T.M., Golovina E.A., Stark J., Dijksterhuis J. 2010. Water- and air-distributed conidia differ in sterol content and cytoplasmic microviscosity. Appl. Environm. Microbiol. 76(1), 366–369.

    Article  Google Scholar 

  9. Dijksterhuis J., Nijsse J., Hoekstra F.A., Golovina E.A. 2007. High viscosity and anisotropy characterize the cytoplasm of fungal dormant stress-resistant spores. Eukaryot. Cell. 6(2), 157–170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Schobert B., Marsh D. 1982. Spin label studies on osmotically-induced changes in the aqueous cytoplasm of Phaeodactylum tricornutum. Biochim. Biophys. Acta. 720(1), 87–95.

    Article  CAS  PubMed  Google Scholar 

  11. Takayama K., Keith A.D., Snipes W. 1975. Effect of isoniazid on the protoplasmic viscosity in Mycobacterium tuberculosis. Antimicrob. Agents. Chemother. 7(1), 22–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Keith A.D., Pollard E.C., Snipes W. 1977. Inositol-less death in yeast results in a simultaneous increase in intracellular viscosity. Biophys. J. 17(3), 205–212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lakowicz J.R. 2006. Fluorescence anisotropy. In: Principles of fluorescence spectroscopy. 3rd ed. New York: Springer Science + Business Media, LLC. P. 353–383.

    Chapter  Google Scholar 

  14. Burns V.W. 1969. Measurement of viscosity in living cells by a fluorescence method. Res. Biochem. Biophys Commun. 37(6), 1008–1014.

    Article  CAS  Google Scholar 

  15. Hashimoto Y., Shinozaki N. 1988. Measurement of cytoplasmic viscosity by fluorescence polarization in phytohemagglutinin-stimulated and unstimulated human peripheral lymphocytes. J. Histochem. Cytochem. 36(6), 609–613.

    Article  CAS  PubMed  Google Scholar 

  16. Lindmo T., Steen H.B. 1977. Flow cytometric measurement of the polarization of fluorescence from intracellular fluorescein in mammalian cells. Biophys. J. 18(2), 173–187.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rotman A., Heldman J. 1981. Intracellular viscosity changes during activation of blood platelets: Studies by fluorescence polarization. Biochemistry. 20(21), 5995–5999.

    Article  CAS  PubMed  Google Scholar 

  18. Livingston D.J., LaMar G.N., Brown W.D. 1983. Myoglobin diffusion in bovine heart muscle. Science. 220(4592), 71–73.

    Article  CAS  PubMed  Google Scholar 

  19. Wang D., Kreutzer U., Chung Y., Jue T. 1997. Myoglobin and hemoglobin rotational diffusion in the cell. Biophys. J. 73(5), 2764–2770.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kreutzer U., Wang D.S., Jue T. 1992. Observing the 1H-NMR signal of the myoglobin Val-E11 in myocardium: An index of cellular oxygenation. Proc. Natl. Acad. Sci. USA. 89(10), 4731–4733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lin P.-C., Kreutzer U., Jue T. 2007. Myoglobin translational diffusion in rat myocardium and its implication on intracellular oxygen transport. J. Physiol. 578(Pt2), 595–603.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Hubley M.J., Rosanske R.C., Moerland T.S. 1995. Diffusion coefficients of ATP and creatine phosphate in isolated muscle: Pulsed gradient 31P-NMR of small biological samples. Nucl. Magn. Reson. Biomed. 8(2), 72–78.

    CAS  Google Scholar 

  23. Hubley M.J., Locke B.R., Moerland T.S. 1997. Reaction-diffusion analysis of the effects of temperature on high-energy phosphate dynamics in goldfish skeletal muscle. J. Exp. Biol. 200(Pt6), 975–978.

    CAS  PubMed  Google Scholar 

  24. de Graaf R.A., van Kranenburg A., Nicolay K. 2000. In vivo 31P-NMR diffusion spectroscopy of ATP and phosphocreatine in rat skeletal muscle. Biophys. J. 78(4), 1657–1664.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gabr R.E., El-Sharkawy A.-M.M., Schär M., Weiss R.G., Bottomley P.A. 2011. High-energy phosphate transfer in human muscle: Diffusion of phosphocreatine. Am. J. Physiol. Cell Physiol. 301(1), 1522–1563.

    Google Scholar 

  26. Endre Z.H., Chapman B.E., Kuchel P.W. 1983. Intraerythrocyte microviscosity and diffusion of specifically labelled [glycyl-α-13C]glutathione by using 13C-NMR. Biochem. J. 216(3), 655–660.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Williams S-P, Haggie P.M., Brindle K.M. 1997. 19FNMR measurements of the rotational mobility of proteins in vivo. Biophys. J. 72(1), 490–498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Li C., Wang G.F., Wang Y., Creager-Allen R., Lutz E.A., Scronce H., Slade K.M., Ruf R.A., Mehl R.A., Pielak G.J. 2010. Protein 19F-NMR in Escherichia coli. J. Am. Chem. Soc. 132(1), 321–3277.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Dix J.A., Verkman A.S. 1990. Mapping of fluorescence anisotropy in single cells by ratio imaging. Application to cytoplasmic viscosity. Biophys. J. 57(2), 231–240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Fushimi K., Verkman A.S. 1991. Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluofimetry. J. Cell Biol. 112(4), 719–725.

    Article  CAS  PubMed  Google Scholar 

  31. Periasamy N., Armijo M., Verkman A.S. 1991. Picosecond rotation of small polar fluorophores in the cytosol of sea urchin eggs. Biochemistry. 30(51), 11836–11841.

    Article  CAS  PubMed  Google Scholar 

  32. Periasamy N., Kao H.P., Fushimi K., Verkman A.S. 1992. Organic osmolytes increase cytoplasmic viscosity in kidney cells. Am. J. Physiol. 263(4 Pt1), C901–C907.

    CAS  PubMed  Google Scholar 

  33. Wandelt B., Cywinski P., Darling G.D., Stranix B.R. 2005. Single cell measurement of microviscosity by ratio imaging of fluorescence of styrylpyridinium probe. Biosensors Bioelectronics. 20(9), 1728–1736.

    Article  CAS  PubMed  Google Scholar 

  34. Srivastava A., Krishnamoorthy G. 1997. Cell type and spatial location dependence of cytoplasmic viscosity measured by time-resolved fluorescence microscopy. Arch. Biochem. Biophys. 340(2), 159–167.

    Article  CAS  PubMed  Google Scholar 

  35. Bicknese S., Periasamy N., Shohet S.B., Verkman A.S. 1993. Cytoplasmic viscosity near the cell plasma membrane: Measurement by evanescent field frequencydomain microfluorimetry. Biophys. J. 65(3), 1272–1282.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Puchkov E.O. 2010. Brownian motion of polyphosphate complexes in yeast vacuoles: Characterization by fluorescence microscopy with image analysis. Yeast. 27(6), 309–315.

    CAS  PubMed  Google Scholar 

  37. Puchkov E.O. 2012. Single yeast cell vacuolar milieu viscosity assessment by fluorescence polarization microscopy with computer image analysis. Yeast. 29(5), 185–190.

    Article  CAS  PubMed  Google Scholar 

  38. Luby-Phelps K., Mujumdar S., Mujumdar R.B., Ernst L.A., Galbraith W., Waggoner A.S. 1993. A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. Biophys. J. 65(1), 236–242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Papadopoulos S., Jürgens K.D., Gros G. 2000. Protein diffusion in living skeletal muscle fibers: Dependence on protein size, fiber type, and contraction. Biophys. J. 79(4), 2084–2094.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Luby-Phelps K., Taylor D.L., Lanni F. 1986. Probing the structure of cytoplasm. J. Cell Biol. 102(6), 2015–2022.

    Article  CAS  PubMed  Google Scholar 

  41. Seksek O., Biwersi J., Verkman A.S. 1997. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J. Cell Biol. 138(1), 131–142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Schlegel R.A., Mercer W.E. 1980. Red cell-mediated microinjection of quiescent fibroblasts. In: Introduction of macromolecules into viable mammalian cells. Eds Baserga R., Croce L., Rovera G. N.Y.: Alan R. Liss, Inc. P. 145–155.

    Google Scholar 

  43. Richardson W.D. 1988. Introducing proteins into culture animal cells. J. Cell Sci. 91(Part 3), 319–322.

    CAS  PubMed  Google Scholar 

  44. Wojcieszyn J.W., Schlegel R.A., Wu E.S., Jacobson K.A. 1981. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc. Natl. Acad. Sci. USA. 78(7), 4407–4410.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Verkman A.S. 2003. Diffusion in cells measured by fluorescence recovery after photobleaching. In: Methods in enzymology. Eds Marriott G., Parker I. San Diego: Acad. Press. 360, P. 635–648.

    CAS  PubMed  Google Scholar 

  46. Swaminathan R., Hoang C.P., Verkman A.S. 1997. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by Green Fluorescent Protein translational and rotational diffusion. Biophys. J. 72(4), 1900–1907.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Snapp E.L., Altan N., Lippincott-Schwartz J. 2003. Measuring protein mobility by photobleaching GFP chimeras in living cells. In: Current protocols in cell biology. Ed Bonifacino J.S. New York: John Wiley & Sons, Inc. P. 21.1–21.1.24.

    Google Scholar 

  48. Papadopoulos S., Endeward V., Revesz-Walker B., Jörgens K.D., Gros G. 2001. Radial and longitudinal diffusion of myoglobin in single living heart and skeletal muscle cells. Proc. Natl. Acad. Sci. USA. 98(10), 5904–5909.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Mullineaux C.W., Nenninger A., Ray N., Robinson C. 2006. Diffusion of Green Fluorescent Protein in three cell environments in Escherichia coli. J. Bacteriol. 188(10), 3442–3448.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Nenninger A., Mastroianni G., Mullineaux C.W. 2010. Size dependence of protein diffusion in the cytoplasm of Escherichia coli. J. Bacteriol. 192(18), 4535–4540.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Saxton M.J. 1997. Single-particle tracking: The distribution of diffusion coefficients. Biophys. J. 72(4), 1744–1753.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Park H.Y., Buxbaum A.R., Singer R.H. 2010. Single mRNA tracking in live cells. In: Methods Enzymol. Ed Walter N.G. San Diego: Acad. Press. 472, 387–406.

    Google Scholar 

  53. Golding I., Cox E.C. 2006. Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96(9), 098102(1–4).

    Article  PubMed  Google Scholar 

  54. Seksek O., Biwerski J., Verkman A.S. 1997. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J. Cell Biol. 138(1), 131–142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Dayel M.J., Hom E.F.Y., Verkman A.S. 1999. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys. J. 76(5), 2843–2851.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kramers H.A. 1940. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica. 7(4), 284–304.

    Article  CAS  Google Scholar 

  57. Jacob M., Schmid F.X. 1999. Protein folding as a diffusion process. Biochemistry. 38(42), 13773–13779.

    Article  CAS  PubMed  Google Scholar 

  58. Siddiqui K.S., Bokhari S.A., Afzal A.J., Singh S. 2004. A novel thermodynamic relationship based on Kramers theory for studying enzyme kinetics under high viscosity. IUBMB Life. 56(7), 403–407.

    Article  CAS  PubMed  Google Scholar 

  59. Pollak E., Talkner P. 2005. Reaction rate theory: What it was, where is it today, and where is it going? Chaos. 15(026116), 1–11.

    Google Scholar 

  60. Pocker Y., Janji N. 1987. Enzyme kinetics in solvents of increased viscosity. Dynamic aspects of carbonic anhydrase catalysis. Biochemistry. 26(9), 2597–2606.

    Article  CAS  PubMed  Google Scholar 

  61. Uribe S., Sampedro J.G. 2003. Measuring solution viscosity and its effect on enzyme activity. Biol. Proc. Online. 5, 108–115.

    Article  CAS  Google Scholar 

  62. Gavish B., Werber M.M. 1979. Viscosity-dependent structural fluctuation in enzyme catalysis. Biochemistry. 18(7), 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  63. Sampson N.S., Knowles J.R. 1992. Segmental movement: Definition of the structural requirements for loop closure in catalysis by triosephosphate isomerase. Biochemistry. 31(36), 8482–8487.

    Article  CAS  PubMed  Google Scholar 

  64. Barbier G.G., Campbell W.H. 2005. Viscosity effects on eukaryotic nitrate reductase activity. J. Biol. Chem. 280(28), 26049–26054.

    Article  CAS  PubMed  Google Scholar 

  65. Demchenko A.P., Ruskyn O.I., Saburova E.A. 1989. Kinetics of the lactate dehydrogenase reaction in highviscosity media. Biochim. Biophys. Acta. 998(2), 196–203.

    Article  CAS  PubMed  Google Scholar 

  66. Sitnitsky A.E. 2010. Model for solvent viscosity effect on enzymatic reactions. Chem. Phys. 369(1), 37–42.

    Article  CAS  Google Scholar 

  67. Gavish B. 1978. The role of geometry and elastic strains in dynamic states of proteins. Biophys. Struc. Mech. 4(1), 37–52.

    Article  CAS  Google Scholar 

  68. Ansari A., Jones C.M., Henry E.R., Hofrichter J., Eaton A. 1992. The role of solvent viscosity in the dynamics of protein conformational changes. Science. 256(5065), 1796–1798.

    Article  CAS  PubMed  Google Scholar 

  69. Rauscher A.A., Simon Z., Szöllösi G.J., Gráf L., Derényi I., Malnasi-Csizmadia A. 2011. Temperature dependence of internal friction in enzyme reactions. FASEB J. 25(8), 2804–2813

    Article  CAS  PubMed  Google Scholar 

  70. Hagen S.J. 2010. Solvent viscosity and friction in protein folding dynamics. Curr. Protein Pept. Sci. 11(5), 385–395.

    Article  CAS  PubMed  Google Scholar 

  71. Rauscher A.A., Derényi I., Gráf L., Malnasi-Csizmadia A. 2013. Critical review. Internal friction in enzyme reactions. IUBMB Life. 65(1), 35–42.

    Article  CAS  PubMed  Google Scholar 

  72. Wheatley D. 2003. Diffusion, perfusion and the exclusion principles in the structural and functional organization of the living cells: Reappraisal of the properties of the “ground substance”. J. Exp. Biol. 206(12), 1955–1961.

    Article  CAS  PubMed  Google Scholar 

  73. Kurganov B.I., Lyubarev A.E. 1989. The principles of organization and operation of the metabolon microcompartment. Biokhimija (Rus.). 54(5), 716–718.

    CAS  Google Scholar 

  74. Lyubarev A.E., Kurganov B.I. 1987. The supramolecular organization of the citric acid cycle enzymes. Mol. Biologia. (Rus.) 21(5), 1286–1296.

    CAS  Google Scholar 

  75. Kurganov B.I., Lyubarev A.E. 1988. Hypothetical structure of the complex of glycolysis enzymes (glycolytic metabolon), formed on the membrane of red blood cells. Mol. Biologia (Rus). 22(6), 1605–1613.

    CAS  Google Scholar 

  76. Shafrir Y., ben-Avraham D., Forgacs G. 2000.Trafficking and signaling through the cytoskeleton: A specific mechanism. J. Cell Sci. 113(15), 2747–2757.

    CAS  PubMed  Google Scholar 

  77. Lopez de Heredia M., Jansen R.-P. 2003. mRNA localization and the cytoskeleton. Curr. Opin. Cell Biol. 16(1), 1–6.

    Google Scholar 

  78. Ross J.L., Ali M.Y., Warshaw D.M. 2008. Cargo transport: Molecular motors navigate a complex cytoskeleton. Curr. Opin. Cell Biol. 20(1), 41–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Donaldson J., Segev N. 2009. Regulation and coordination of intracellular trafficking: An overview. In: Trafficking inside cells: Pathways, mechanisms and regulation. Ed. Segev N. Austin, New York: Landes Bioscience and Springer Science+Business Media. p. 329–341.

    Chapter  Google Scholar 

  80. Kinsey S.T., Locke B.R., Dillaman R.M. 2011. Molecules in motion: Influences of diffusion on metabolic structure and function in skeletal muscle. J. Exp. Biol. 214(2), 263–274.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Sebollela A., Louzada P.R., Sola-Penna M., Sarone-Williams V., Coelho-Sampaio T., Ferreira S.T. 2004. Inhibition of glutathion reductase by trehalose: Possible implications in yeast survival and recovery from stress. Int. J. Biochem. Cell. Biol. 36(5), 900–908.

    Article  CAS  PubMed  Google Scholar 

  82. Wera S., De Schrijver E., Geyskens I., Nwaka S., Thevelein J.M. 1999. Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem. J. 343(Pt3), 621–626.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Sampedro J.G., Uribe S. 2004. Trehalose-enzyme interactions result structure stabilization and activity inhibition. The role of viscosity. Mol. Cell. Biochem. 256/257(1–2), 319–327.

    Article  CAS  Google Scholar 

  84. Goldovskiy A.M. 1981. Anabioz (Anabiosis). L.: Nauka.

    Google Scholar 

  85. Clegg J.S. 2001. Cryptobiosis a peculiar state of biological organization. Compar. Biochem. Physiol. Part B: Biochem. Mol. Biol. 128(4), 613–624.

    Article  CAS  Google Scholar 

  86. Ellis R.J. 2001. Macromolecular crowding: Obvious but underappreciated. Trends Biochem. Sci. 26(10), 597–604.

    Article  CAS  PubMed  Google Scholar 

  87. Minton A.P. 2001. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276(14), 10577–10580.

    Article  CAS  PubMed  Google Scholar 

  88. Zhou H.-X., Rivas G., Minton A.P. 2008. Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37(1), 375–397.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Ando T., Skolnick J. 2010. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc. Natl. Acad. Sci. USA. 107(43), 18457–18462.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Długosz M., Trylska J. 2011. Diffusion in crowded biological environments: Applications of Brownian dynamics. BMC Biophys. 4(1), 1–9.

    Article  Google Scholar 

  91. Frembgen-Kesner T., Elcock A.H. 2013. Computer simulations of the bacterial cytoplasm. Biophys. Rev. doi: 10.1007/s12551-013-0110-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Puchkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puchkov, E.O. Intracellular viscosity: Methods of measurement and role in metabolism. Biochem. Moscow Suppl. Ser. A 7, 270–279 (2013). https://doi.org/10.1134/S1990747813050140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747813050140

Keywords

Navigation