Skip to main content
Log in

Single-Cell Force Spectroscopy of Interaction of Lipopolysaccharides from Yersinia pseudotuberculosis and Yersinia pestis with J774 Macrophage Membrane Using Optical Tweezers

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

In order to investigate quantitatively the role of lipopolysaccharides (LPS) from outer bacterial membrane at the initial state of bacterium adhesion to a host cell membrane, a model system for single cell force spectroscopy was developed and used. The system comprised of an LPS-coated microsphere placed into optical trap and a J774 macrophage being approached the microsphere to initiate their binding and then moved back to rupture the bond. An “object shadow” phenomenon was discovered, manifested as large-scale variations of the signal of photodetector registering the trapped microsphere displacement, such variations emerging long before the actual interaction between the macrophage and microsphere. The theory and the measurements technique were developed for registration of the force required for detachment of bounded microsphere from the object investigated by means of optical tweezers under the “object shadow” conditions. Characteristic spectra of binding force between J774 macrophage and microspheres functionalized with various LPS, as well as LPS plus complementary antibodies preparations were obtained at the rate of detachment force application of 3–6 pN/s. Force spectrum characteristic of Yersinia pseudotuberculosis LPS possessing O-antigen had a maximum at ~14 pN with half-width of ~23 pN. The treatment of O-antigen with complementary antibodies resulted in transformation of this spectrum into a spectrum with maximum at ~10 pN and half-width of ~14 pN, being almost identical to the spectrum of Y. pestis LPS devoid of O-antigen, with a maximum at ~9 pN and half-width of ~13 pN. A possible mechanism of force spectra formation has been proposed under assumptions of nonspecific binding of O-antigen and probable receptor-type binding of LPS core region to the macrophage surface. The elastic modulus of macrophage envelope, as estimated using analysis of displacement of the contacting microsphere as an indenter, was ≈0.17 pN/nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ofek I, Hasty D.L., Doyle R.J. 2003. Basic concepts in bacterial adhesion. In: Bacterial Adhesion to Animal Cells and Tissues. Washington: ASM Press, pp. 1–18.

    Chapter  Google Scholar 

  2. Mikula K.M., Kolodziejczyk R., Goldman A. 2013. Yersinia infection tools–characterization of structure and function of adhesins. Front. Cell Infect. Microbiol. 2, 169 (14).

    Google Scholar 

  3. Ribet D., Cossart P. 2015. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17 (3), 173–183.

    Article  PubMed  CAS  Google Scholar 

  4. Viboud G.I., Bliska J.B. 2005. Yersinia outer proteins: Role in modulation of host cell signaling responses and pathogenesis. Annu. Rev. Microbiol. 59, 69–89.

    Article  PubMed  CAS  Google Scholar 

  5. Pujol C., Bliska J.B. 2005. Turning Yersinia pathogenesis outside in: Subversion of macrophage function by intracellular yersiniae. Clin. Immunol. 114 (3), 216–226.

    Article  PubMed  CAS  Google Scholar 

  6. Medzhitov R. 2007. Recognition of microorganisms and activation of the immune response. Nature. 449 (7164), 819–826.

    Article  PubMed  CAS  Google Scholar 

  7. Park B.S., Lee J.O. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exper. Mol. Med. 45 (e66), 1–9.

    Google Scholar 

  8. Krachler A.M., Orth K. 2013. Targeting the bacteriahost interface. Virulence. 4 (4), 284–294.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rietschel E.Th., Kirikae T., Schade F.U., Mamat U., Schmidt G., Loppnow H., Ulmer A.J., Zähringer U., Seydel U., Di Padova F., Schreier, M., Brade, H. 1994. Bacterial endotoxin: Molecular relationships of structure to activity and function. FASEB J. 8 (2), 217–225.

    Article  PubMed  CAS  Google Scholar 

  10. Shoaf-Sweeney K.D., Hutkins R.W. 2009. Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. Adv. Food. Nutr. Res. 55, 101–161.

    Article  PubMed  CAS  Google Scholar 

  11. Doyle R.J. 2000. Contribution of the hydrophobic effect to microbial infection. Microbes Infect. 2 (4), 391–400.

    Article  PubMed  CAS  Google Scholar 

  12. Erridge C., Bennett-Guerrero E., Poxton I.R. 2002. Structure and function of lipopolysaccharides. Microbes Infect. 4 (8), 837–851.

    Article  PubMed  CAS  Google Scholar 

  13. Lu Q., Wang J., Faghihnejad A., Zeng H., Liu Y. 2011. Understanding the molecular interactions of lipopolysaccharides during E. coli initial adhesion with a surface forces apparatus. Soft Matter. 7 (19), 9366–9379.

    Article  CAS  Google Scholar 

  14. Knirel, Y. A., Anisimov A. P. 2012. The LPS of the plague microbe Yersinia pestis: Structure, genetics and biological properties. Acta Naturae (Rus.). 4 (3), 49–61.

    Google Scholar 

  15. Lam J.S., Graham L.L., Lightfoot J. T. Dasgupta T., Beveridge T.J. 1992. Ultrastructural examination of the lipopolysaccharides of Pseudomonas aeruginosa strains and their isogenic rough mutants by freeze-substitution. J. Bacreriol. 174 (22), 7159–7167.

    Article  CAS  Google Scholar 

  16. Strauss J., Burnham N.A., Camesano T.A. 2009. Atomic force microscopy study of the role of LPS Oantigen on adhesion of E. coli. J. Mol. Recognit. 22 (5), 347–355.

    Article  PubMed  CAS  Google Scholar 

  17. Leckband D., Israelachvili J. 2001. Intermolecular forces in biology. Quart. Rev. Biophys. 34 (2), 105–267.

    Article  CAS  Google Scholar 

  18. Wright S.D., Jong M.T.C. 1986. Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J. Exp. Med. 164 (6), 1876–1888.

    Article  PubMed  CAS  Google Scholar 

  19. Ofek I., Goldhar J., Keisari Y. Nonopsonic phagocytosis of microorganisms. 1995. Annu. Rev. Microbiol. 49, 239–276.

  20. Jacques, M. 1996. Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends Microbiol. 4 (10), 408–409.

    Article  PubMed  CAS  Google Scholar 

  21. Razatos A., Ong Y., Sharma M.M., Georgiou G. 1998. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc. Natl. Acad. Sci. USA. 95 (9), 11059–11064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Targosz M., Labuda A., Czuba P., Biedron R., Strus M., Gamian A., Marcinkiewicz J., Szymonski M. 2006. Influence of macrophage activation on their capacity to bind bacterial antigens studied with atomic force microscopy. Nanomedicine. 2 (2), 82–88.

    Article  PubMed  CAS  Google Scholar 

  23. Vonna L., Wiedemann A., Aepfelbacher M., Sackmann E. 2007. Micromechanics of filopodia mediated capture of pathogens by macrophages. Eur. Biophys. J. 36 (2), 145–151.

    Article  PubMed  CAS  Google Scholar 

  24. Zidovska A., Sackmann E. 2011. On the mechanical stabilization of filopodia. Biophys. J. 100 (3), 1428–1437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wei M.T., Hua K.-F., Hsu J., Karmenyan A., Tseng K.Y., Wong C.H., Hsu H.-Y., Chiou A. 2007. The interaction of lipopolysaccharide with membrane receptors on macrophages pretreated with extract of Reishi polysaccharides measured by optical tweezers. Opt. Express. 15 (17), 11020–11032.

    Article  PubMed  CAS  Google Scholar 

  26. Bengoechea J.A., Najdenski H., Skurnik M. 2004. Lipopolysaccharide O antigen status of Yersinia enterocolitica O:8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Mol. Microbiol. 52 (2), 451–469.

    Article  PubMed  CAS  Google Scholar 

  27. Murray G.L., Attridge S.R., Morona R. 2006. Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J. Bacteriol. 188 (7), 2735–2739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Byvalov A.A., Kononenko V.L., Konyshev I.V. 2017. Effect of lipopolysaccharide O-side chains on the adhesiveness of Yersinia pseudotuberculosis to J774 macrophages as revealed by optical tweezers. Appl. Biochem. Microbiol. 53 (2), 258–266. doi 10.1134/S0003683817020077

    Article  CAS  Google Scholar 

  29. Achtman M., Morelli G., Zhu P., Wirth T. Diehl I, Kusecek B, Vogler A.J., Wagner D.M., Allender C.J., Easterday W.R., Chenal-Francisque V., Worsham P., Thomson N.R., Parkhill J., Lindler L.E., Carniel E, Keim P. 2004. Microevolution and history of the plague bacillus, Yersinia pestis. Proc. Natl. Acad. Sci. USA. 101 (51), 17837–17842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Skurnik M., Peippo A., Ervelä E. 2000. Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Molec. Microbiol. 37 (2), 316–330.

    Article  CAS  Google Scholar 

  31. Knirel Y.A., Kondakova A.N., Bystrova O.V., Lindner B., Shaikhutdinova R.Z., Dentovskaya S.V., Anisimov A.P. 2008. New features of Yersinia lipopolysaccharide structures as revealed by high-resolution electrospray ionization mass spectrometry. Adv. Sci. Lett. 1 (2), 192–198.

    Article  CAS  Google Scholar 

  32. Westphal O., Jann K. 1965. Bacterial lipopolysaccharides. Extraction with phenolwater and further applications of the procedure. In: Methods in Carbohydrate chemistry. V. 5. Eds Whistler R.L., Wolfan M.L. New York: Acad. Press Inc., pp. 83–91.

    Google Scholar 

  33. Byvalov A.A., Dudina L.G., Lytvynets, S.G., Novikova O.D., Khomenko, V.A. Portnyagina, O.Yu., Ovodov Yu.S. 2014. The study of the surface antigenic epitopes of Yersinia pseudotuberculosis using monoclonal antibodies. Prikl. Biokhim. Mikrobiol. (Rus.). 50 (2), 203–210.

    CAS  Google Scholar 

  34. Wozniak A, Mameren J.V., Ragona S. 2009. Singlemolecule force spectroscopy using the NanoTracker optical tweezers platform: from design to application. Curr. Pharm. Biotechnol. 10, 467–473.

    Article  PubMed  CAS  Google Scholar 

  35. Molodtsov M.I., Grishchuk E.L., McIntosh J.R., Ataullakhanov F.I. 2007. A new type of biomechanical machine. Ross. Khim. Zh. (Rus.). 51 (1), 36–44.

    CAS  Google Scholar 

  36. Neuman K.C., Block S.M. 2004. Optical trapping. Rev. Sci. Instr. 75 (9), 2287–2809.

    Article  CAS  Google Scholar 

  37. Collett D. 1994. Modelling survival data in medical research. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

  38. Wand M.P., Jones M.C. 1995. Kernel Smoothing. London: Chapman and Hal.

    Book  Google Scholar 

  39. Busscher H.J., Weerkamp A.H. 1987. Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol. Lett. 46 (2), 165–173.

    Article  CAS  Google Scholar 

  40. Lower S.K. 2011. Atomic force microscopy to study intermolecular forces and bonds associated with bacteria. Adv. Exp. Med. Biol. 715, 285–299.

    Article  PubMed  CAS  Google Scholar 

  41. Lam J., Herant M., Dembo M., Heinrich V. 2009. Baseline mechanical characterization of J774 macrophages. Biophys. J. 96 (1), 248–254.

    Article  PubMed  CAS  Google Scholar 

  42. Evans E., Ritchie K. 1997. Dynamic strength of molecular adhesion bonds. Biophys. J. 72 (4), 1541–1555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chernyadev V.A., Byvalov A.A., Ananchenko B.A., Bushmeleva L.G., Lytvynets S.G. 2012. Morphological features of bacteria Yersinia pseudotuberculosis, grown under different temperature conditions. Izvestja Komi Nauchnogo Centra Uralskogo Otdelenija RAN (Rus.). 3 (11), 57–60.

    Google Scholar 

  44. Peula-Garcia J.M., Molina-Bolivar J.A., Velasco J., Rojas A., Galisteo-Gonzalez F. 2002. Interaction of bacterial endotoxine (lipopolysaccharide) with latex particles: Application to latex agglutination immunoassays. J. Colloid Interf. Sci. 245 (2), 230–236.

    Article  CAS  Google Scholar 

  45. Petty R.P., Haefman D.G., McConnel H.M. 1981. Disappearance of macrophage surface folds after antibody- dependent phagocytosis. J. Cell Biol. 89 (3), 223–229.

    Article  PubMed  CAS  Google Scholar 

  46. Raucher D., Sheetz M.P. 1999. Characteristics of a membrane reservoir buffering membrane tension. Biophys. J. 77 (4), 1992–2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Skurnik M., Zhang L. 1996. Molecular genetics and biochemistry of Yersinia lipopolysaccharide. APMIS. 104, 849–872.

    Article  PubMed  CAS  Google Scholar 

  48. Lahtinen P., Brzezinska A., Skurnik M. 2003. Temperature and growth phase regulate the transcription of the O-antigen gene cluster of Yersinia enterocolitica O:3. In: The genus Yersinia: Entering the functional genomic era. Eds Skurnik M., Granfors K., Bengoechea J.A. New York: Kluwer Acad./Plenum Publ, pp. 289–292.

    Google Scholar 

  49. Skurnik M., Bengoechea J.A. 2009. Genetics and regulation of bacterial lipopolysaccharide synthesis. In: Bacterial polysaccharides–current innovations and future trends. Ed. Ulrich M. Norfolk: Caister Acad. Press, pp. 27–37.

    Google Scholar 

  50. Kerrigan A.M., Brown G.D. 2009. C-type lectins and phagocytosis. Immunobiol. 214 (7), 562–575.

    Article  CAS  Google Scholar 

  51. Klena J., Zhang P., Schwartz O., Hull S., Chen T. 2005. The core lipopolysaccharide of Escherichia coli is a ligand for the dendritic-cell-specific intercellular adhesion molecule nonintegrin CD209 receptor. J. Bacteriol. 187 (5), 1710–1715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhang P., Skurnik M., Zhang S.-S., Schwartz O., Kalyanasundaram R., Bulgheresi S., He J.J., Klena J.D., Hinnebusch B.J., Chen T. 2008. Human dendritic cellspecific intercellular adhesion molecule-grabbing nonintegrin (CD209) is a receptor for Yersinia pestis that promotes phagocytosis by dendritic cells. Infect. Immun. 76 (5), 2070–2079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rainho C.S., de Sá E.A., Jabur Gaziri L.C., Ostrensky Saridakis H., Felipe I. 1999. Modulation of lectinophagocytosis of Escherichia coli by variation of pH and temperature. FEMS Immunol. Med. Microbiol. 24 (1), 91–95.

    Article  PubMed  CAS  Google Scholar 

  54. Zamze S., Martinez-Pomares L., Jones H., Taylor P.R., Stillion R.J., Gordon S., Wong S.Y. 2002. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J. Biol. Chem. 277 (44), 41613–41623.

    Article  PubMed  CAS  Google Scholar 

  55. Reading P.C., Miller J.L., Anders E.M. 2000. Involvement of the mannose receptor in infection of macrophages by influenza virus. J. Virol. 74 (11), 5190–5197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Protopopov V.V., Ustinov N.D. 1985. Lazernoje geterodinirovanie (Laser heterodyning). M.: Nauka Publisher.

    Google Scholar 

  57. Harada Y., Asakura T. 1996. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communic. 124 (5–6), 529–541.

    Article  CAS  Google Scholar 

  58. Goncharenko A.M. 1977. Gaussovi puchki sveta (Gaussian beams of light). Minsk: Science and Technology.

    Google Scholar 

  59. van de Hulst H.C. 1981. Light scattering by small particles. New York: Dover Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Kononenko.

Additional information

Original Russian Text © A.A. Byvalov, V.L. Kononenko, I.V. Konyshev, 2018, published in Biologicheskie Membrany, 2018, Vol. 35, No. 2, pp. 115–130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byvalov, A.A., Kononenko, V.L. & Konyshev, I.V. Single-Cell Force Spectroscopy of Interaction of Lipopolysaccharides from Yersinia pseudotuberculosis and Yersinia pestis with J774 Macrophage Membrane Using Optical Tweezers. Biochem. Moscow Suppl. Ser. A 12, 93–106 (2018). https://doi.org/10.1134/S1990747818020058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818020058

Keywords

Navigation