Skip to main content
Log in

Analysis of the role of protein phosphorylation in the development of diseases

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

During recent decades significant progress in studies of the molecular basis of socially significant diseases has been achieved due to introduction of high-throughput methods of genomics and proteomics. Numerous studies, performed within the global program “Human Proteome,” were aimed at identifying all possible proteins in various (including cancer) cell cultures and tissues. One of the aims was to identify socalled biomarkers—the proteins, specific for certain pathologies. However, many studies have shown that the development of the disease is not associated with appearance of new proteins, but it depends on the expression level of certain genes or specific proteoforms representing splice variants, single amino acid polymorphism (SAP) and post-translational modifications (PTM) of proteins. PTMs can play a key role in the development of pathology, because they activate various regulatory or structural proteins in most cellular processes. Among such modifications, phosphorylation appears to be the most significant PTM. This review considers methods of analysis of protein phosphorylation used in studies of the molecular basis of oncological diseases; it contains examples illustrating contribution of modified proteins directly involved in their development as well as examples of screening of such crucial PTMs in diagnostics and selection of methods for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shruthi, B.S., Vinodhkuma, P., and Selvamani P., Adv. Biomed. Res., 2016, vol. 5, p. 67. doi 10.4103/2277-9175.180636

  2. Corbo, C., Cevenini, A., and Salvatore, F., Proteomics— Clinical Applications, 2017, 1600072. doi 10.1002/prca.201600072

    Google Scholar 

  3. Kang, C., Lee, Y., and Lee, J.E., W. J. Gastroenterol., 2016, vol. 22, pp. 8283–8293. doi 10.3748/wjg.v22.i37.8283

    Article  Google Scholar 

  4. Di Meo, A., Pasic, M.D., Yousef, G.M., Di Meo, A., Pasic, M.D., and Yousef, G.M., Oncotarget, 2015, vol. 7, pp. 52460–52474. doi 10.18632/oncotarget. 8931

    Article  Google Scholar 

  5. Naruzhnyi, S.N., Ronzhina, N.L., Mainskova, M.A., Belyakova, N.V., Pantina, R.A., and Filatov, M.V., Biomed. Khim., 2014, vol. 60, pp. 308–321. doi 10.18097/pbmc20146003308

    Article  Google Scholar 

  6. Wasylishen, A.R. and Lozano, G., Cold Spring Harb. Perspect. Med., 2016, vol. 6, a026211. doi 10.1101/cshperspect. a026211

    Article  Google Scholar 

  7. Harris, T.J.R. and McCormick, F., Nat. Rev. Clin. Oncol., 2010, vol. 7, pp. 251–265. doi 10.1038/nrclinonc. 2010.41

    Article  CAS  Google Scholar 

  8. Irby, R.B. and Yeatman, T.J., Oncogene, 2000, vol. 19, pp. 5636–5642. doi 10.1038/sj.onc.1203912

    Article  CAS  Google Scholar 

  9. Mármol, I., Sánchez-de-Diego, C., Dieste, A.P., Cerrada, E., and Yoldi, M.R., Int. J. Mol. Sci., 2017, vol. 18, p. 197. doi 10.3390/IJMS18010197

  10. Lee, M.J. and Yaffe, M.B., Cold Spring Harb. Perspect. Biol., 2016, vol. 8, a005918. doi 10.1101/cshperspect. a005918

  11. Hernández-Monge, J., Rousset-Roman, A.B.A., Medina-Medina, I., and Olivares-Illana, V., Genes and Cancer, 2016, vol. 7, pp. 278–287. doi 10.18632 genesandcancer. 120

    Google Scholar 

  12. Krueger, K.E. and Srivastava, S., Mol. Cell. Proteomics, 2006, vol. 5, pp. 1799–1810. doi 10.1074/mcp.R600009-MCP200

    Article  CAS  Google Scholar 

  13. Bertram, J.S., Molecular Aspects of Medicine, 2000, vol. 21, pp. 167–223. doi 10.1016/S0098-2997(00)00007-8

    Article  CAS  Google Scholar 

  14. Hornbeck, P.V., Zhang, B., Murray, B., Kornhauser, J.M., Latham, V., and Skrzypek, E., Nucleic Acids Res., 2015, vol. 43, D512–D520. doi 10.1093/nar/gku1267

  15. Burnett, G. and Kennedy, E.P., J. Biol. Chem., 1954, vol. 211, pp. 969–980.

    CAS  Google Scholar 

  16. Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., Reeves, C., Li, Y., Hu, Y., Tan, Z., Stokes, M., Sullivan, L., Mitchell, J., Wetzel, R., MacNeill, J., Ren, J.M., Yuan, J., Bakalarski, C. E., Villen, J., Kornhauser, J. M., Smith, B., Li, D., Zhou, X., Gygi, S.P., Gu, T.-L., Polakiewicz, R.D., Rush, J., and Comb, M.J., Cell, 2007, vol. 131, pp. 1190–1203. doi 10.1016/j.cell.2007.11.025

    Article  CAS  Google Scholar 

  17. Roskoski, R., Pharmacol. Res., 2014, vol. 79, pp. 34–74. doi 10.1016/j.phrs.2013.11.002

    Article  CAS  Google Scholar 

  18. Pópulo, H., Lopes, J.M., and Soares, P., Int. J. Mol. Sci., 2012, vol. 13, pp. 1886–1918. doi 10.3390/ijms13021886

    Article  Google Scholar 

  19. Matallanas, D., Birtwistle, M., Romano, D., Zebisch, A., Rauch, J., von Kriegsheim, A., and Kolch, W., Genes Cancer, 2011, vol. 2, pp. 232–260. doi 10.1177/1947601911407323

    Article  CAS  Google Scholar 

  20. Yang, S.X., Polley, E., and Lipkowitz, S., Cancer Treatment Rev., 2016, vol. 45, pp. 87–96. doi 10.1016/j.ctrv.2016.03.004

    Article  CAS  Google Scholar 

  21. García-Carracedo, D., Ángeles Villaronga, M., Álvarez-Teijeiro, S., Hermida-Prado F., Santamaría, I., Allonca, E., Suárez-Fernández, L., Gonzalez, M.V., Balbín, M., Astudillo, A., Martínez-Camblor, P., Su, G.H., Rodrigo, J.P., and García-Pedrero, J.M., Oncotarget, 2016, vol. 7, pp. 29780–29793. doi 10.18632/oncotarget.8957

    Article  Google Scholar 

  22. Bubici, C. and Papa, S., Br. J. Pharmacol., 2014, vol. 171, pp. 24–37. doi 10.1111/bph.12432

    Article  CAS  Google Scholar 

  23. Davies, C. and Tournier, C., Biochem. Soc. Trans., 2012, vol. 40, pp. 85–89. doi 10.1042/BST20110641

  24. Rutherford, C., Speirs, C., Williams, J.J.L., Ewart, M.-A., Mancini, S.J., Hawley, S.A., Delles, C., Viollet, B., Costa-Pereira, A.P., Baillie, G.S., Salt, I.P., and Palmer, T.M. Sci. Signal., 2016, vol. 9, no. 453, ra109. doi 10.1126/scisignal.aaf8566

  25. Jiang, M.-C., Tumor Biology, 2016, vol. 37, pp. 13077–13090. doi 10.1007/s13277-016-5301-x

    Article  CAS  Google Scholar 

  26. Dyson, N.J., Genes Dev., 2016, vol. 30, pp. 1492–1502. doi 10.1101/gad.282145.116

    Article  CAS  Google Scholar 

  27. Gully, C.P., Velazquez-Torres, G., Shin, J.-H., Fuentes-Mattei, E., Wang, E., Carlock, C., Chen, J., Rothenberg, D., Adams, H.P., Choi, H.H., Guma, S., Phan, L., Chou, P.-C., Su, C.-H., Zhang, F., Chen, J.-S., Yang, T.-Y., Yeung, S.-C.J., and Lee, M.-H., Proc. Natl. Acad. Sci. USA, 2012, vol. 109, E1513–E1522. doi 10.1073/pnas.1110287109

    Article  CAS  Google Scholar 

  28. Rector, J., Kapil, S., Treude, K.J., Kumm, P., Glanzer, J.G., Byrne, B.M., Liu, S., Smith, L.M., DiMaio, D.J., Giannini, P., Smith, R.B., and Oakley, G.G., Oncotarget, 2016, vol. 8, pp. 9243–9250. doi 10.18632/oncotarget.14001

    Google Scholar 

  29. Miguel-Luken, M.J. de, Chaves-Conde, M., Quintana, B., Menoyo, A., Tirado, I., Miguel-Luken, V. de, Pachón, J., Chinchón, D., Suarez, V., and Carnero, A., Oncotarget, 2016, vol. 7, pp. 31723–31737. doi 10.18632/oncotarget.9172

    Article  Google Scholar 

  30. Okayama, A., Kimura, Y., Miyagi, Y., Oshima, T., Oshita, F., Ito, H., Nakayama, H., Nagashima, T., Rino, Y., Masuda, M., Ryo, A., and Hirano, H., J. Proteomics, 2016, vol. 139, pp. 60–66. doi 10.1016/j.jprot.2016.03.005

    Article  CAS  Google Scholar 

  31. Carter, J.H., Deddens, J.A., Spaulding, N.R., Lucas, D., Colligan, B.M., Lewis, T.G., Hawkins, E., Jones, J., Pemberton, J.O., Douglass, L.E., and Graff, J.R., Br. J. Cancer, 2016, vol. 114, pp. 444–453. doi 10.1038/bjc.2015.450

    Article  CAS  Google Scholar 

  32. Piersma, S.R., Knol, J.C., De Reus, I., Labots, M., Sampadi, B.K., Pham, T.V., Ishihama, Y., Verheul, H.M.W., and Jimenez, C.R., J. Proteomics, 2015, vol. 127, pp. 247–258. doi 10.1016/j.jprot. 2015.03.019

    Article  CAS  Google Scholar 

  33. Schunter, A.J., Yue, X., and Hummon, A.B., Anal. Bioanal. Chem., 2017, vol. 409, pp. 1749–1763. doi 10.1007/s00216-016-0125-5

    Article  CAS  Google Scholar 

  34. Schweppe, D.K., Rigas, J.R., and Gerber, S.A., J. Proteomics, 2013, vol. 91, pp. 286–296. doi 10.1016/j.jprot.2013.07.023

    Article  CAS  Google Scholar 

  35. Klammer, M., Kaminski, M., Zedler, A., Oppermann, F., Blencke, S., Marx, S., Muller, S., Tebbe, A., Godl, K., and Schaab, C., Mol. Cell. Proteomics, 2012, vol. 11, pp. 651–668. doi 10.1074/mcp.M111.016410

    Article  CAS  Google Scholar 

  36. Tan, X., Liu, P., Huang, Y., Zhou, L., Yang, Y., Wang, H., Yu, B., Meng, X., Zhang, X., and Gao, F., PLoS One, 2016, vol. 11, e0152280. doi 10.1371/journal. pone.0152280

  37. Casado, P., Alcolea, M.P., Iorio, F., Rodríguez-Prados, J.-C., Vanhaesebroeck B., Saez-Rodriguez, J., Joel, S., and Cutillas, P.R., Genome Biol., 2013, vol. 14, R37. doi 10.1186/gb-2013-14-4-r37

  38. Pinto-Leite, R., Arantes-Rodrigues, R., Sousa, N., Oliveira, P.A., and Santos, L., Tumor Biology, 2016, vol. 37, pp. 11541–11551. doi 10.1007/s13277-016-5083-1

    Article  CAS  Google Scholar 

  39. Akl, M.R., Nagpal, P., Ayoub, N.M., Tai, B., Prabhu, S.A., Capac, C.M., Gliksman, M., Goy, A., and Suh, K.S., Oncotarget, 2016, vol. 7, no. 28, pp. 44735–44762. doi 10.18632/oncotarget.8203

    Article  Google Scholar 

  40. Asati, V., Mahapatra, D.K., and Bharti, S.K., Eur. J. Med. Chem., 2016, vol. 109, pp. 314–341. doi 10.1016/j.ejmech.2016.01.012

    Article  CAS  Google Scholar 

  41. Booy, E.P., Johar, D., Maddika, S., Pirzada, H., Sahib, M.M., Gehrke, I., Loewen, S., Louis, S.F., Kadkhoda, K., Mowat, M., and Los, M., Arch. Immunol. Ther. Exp. (Warsz.), 2006, vol. 54, pp. 85–101. doi 10.1007/s00005-006-0011-5

    Article  CAS  Google Scholar 

  42. Greenhalgh, J., Bagust, A., Boland, A., Dwan, K., Beale, S., Hockenhull, J., Proudlove, C., Dundar, Y., Richardson, M., Dickson, R., Mullard, A., and Marshall, E., Health Technol. Assess., 2015, vol. 19, pp. 1–134. doi 10.3310/hta19470

    Google Scholar 

  43. Tiwari, S.R., Mishra, P., and Abraham, J., Clinical Breast Cancer, 2016, vol. 16, pp. 344–348. doi 10.1016/j.clbc.2016.05.016

    Article  CAS  Google Scholar 

  44. Segovia-Mendoza, M., González-González, M.E., Barrera, D., Díaz, L., and García-Becerra, R., Am. J. Cancer Res., 2015, vol. 5, pp. 2531–2561. PMC4633889

    Google Scholar 

  45. Qiu, P., Wang, S., Liu, M., Ma, H., Zeng, X., Zhang, M., Xu, L., Cui, Y., Xu, H., Tang, Y., He, Y., and Zhang L., BMC Cancer, 2017, vol. 17, p. 55. doi 10.1186/s12885-016-3039-x

  46. Haas-Kogan, D.A., Prados, M.D., Tihan, T., Eberhard, D.A., Jelluma, N., Arvold, N.D., Baumber, R., Lamborn, K.R., Kapadia, A., Malec, M., Berger, M.S., Stokoe, D., J. Natl. Cancer Inst., 2005, vol. 97, pp. 880–887. doi 10.1093/jnci/dji161

    Article  CAS  Google Scholar 

  47. Mellinghoff, I.K., Wang, M.Y., Vivanco, I., Haas-Kogan, D.A., Zhu, S., Dia, E.Q., Lu, K.V., Yoshimoto, K., Huang, J.H.Y., Chute, D.J., Riggs, B.L., Horvath, S., Liau, L.M., Cavenee, W.K., Rao P.N., Beroukhim, R., Peck, T.C., Lee, J.C., Sellers, W.R., Stokoe, D., Prados, M., Cloughesy, T.F., Sawyers, C.L., and Mischel, P.S., N. Engl. J. Med., 2005, vol. 353, pp. 2012–2024. doi 10.1056/NEJMoa051918

    Article  CAS  Google Scholar 

  48. Matei, D., Chang, D.D., and Jeng, M.-H., Clin. Cancer Res., 2004, vol. 10, doi 10.1158/1078-0432.CCR-0754-03

  49. Tuchen, M., Wilisch-Neumann, A., Daniel, E.A., Baldauf, L., Pachow, D., Scholz, J., Angenstein, F., Stork, O., Kirches, E., and Mawrin, C., Eur. J. Cancer, 2017, vol. 73, pp. 9–21. doi 10.1016/j.ejca.2016.12.004

    Article  CAS  Google Scholar 

  50. Zhong, D., Xiong, L., Liu, T., Liu, X., Liu, X., Chen, J., Sun, S.-Y., Khuri, F.R., Zong, Y., Zhou, Q., and Zhou, W., J. Biol. Chem., 2009, vol. 284, pp. 23225–23233. doi 10.1074/jbc.M109.005280

    Article  CAS  Google Scholar 

  51. Machida, K., Eschrich, S., Li, J., Bai, Y., Koomen, J., Mayer, B.J., and Haura, E.B., PLoS One, 2010, vol. 5, e13470. doi 10.1371/journal.pone.0013470

    Article  Google Scholar 

  52. Zhang, X., Belkina, N., Jacob, H.K.C., Maity, T., Biswas, R., Venugopalan, A., Shaw, P. G., Kim, M.-S., Chaerkady, R., Pandey, A., and Guha, U., Proteomics, 2015, vol. 15, pp. 340–355. doi 10.1002/pmic.201400315

    Article  CAS  Google Scholar 

  53. Guo, A., Villen, J., Kornhauser, J., Lee, K.A., Stokes, M.P., Rikova, K., Possemato, A., Nardone, J., Innocenti, G., Wetzel, R., Wang, Y., MacNeill, J., Mitchell, J., Gygi, S.P., Rush, J., Polakiewicz, R.D., Comb, M.J., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 692–697. doi 10.1073/pnas.0707270105

    Article  CAS  Google Scholar 

  54. Paweletz, C.P., Charboneau, L., Bichsel, V.E., Simone, N.L., Chen, T., Gillespie, J.W., Emmert-Buck, M.R., Roth, M.J., Petricoin, E.F., and Liotta, L.A., Oncogene, 2001, vol. 20, pp. 1981–1989. doi 10.1038/sj.onc.1204 265

    Article  CAS  Google Scholar 

  55. Rapkiewicz, A., Espina, V., Zujewski, J.A., Lebowitz, P.F., Filie, A., Wulfkuhle, J., Camphausen, K., Petricoin, E.F., Liotta, L.A., and Abati, A., Cancer, 2007, vol. 111, pp. 173–184. doi 10.1002/cncr.22686

    Article  CAS  Google Scholar 

  56. Sheehan, K.M., Mol. Cell. Proteomics, 2005, vol. 4, pp. 346–355. doi 10.1074/mcp.T500003-MCP200

    Article  CAS  Google Scholar 

  57. Zhang, H. and Pelech, S., Semin. Cell. Dev. Biol., 2012, vol. 23, pp. 872–882.

    Article  CAS  Google Scholar 

  58. Brumbaugh, K., Johnson, W., Liao, W.-C., Lin, M.-S., Houchins, J.P., Cooper, J., Stoesz, S., and Campos-Gonzalez, R., Meth. Mol. Biol., 2011, vol. 717, pp. 3–43. doi 10.1007/978-1-61779-024-9_1

    Article  CAS  Google Scholar 

  59. Liotta, L.A., Espina, V., Mehta, A.I., Calvert, V., Rosenblatt, K., Geho, D., Munson, P.J., Young, L., Wulfkuhle, J., and Petricoin, E.F., Cancer Cell, 2003, vol. 3, pp. 317–325. doi 10.1016/S1535-6108(03)00086-2

    Article  CAS  Google Scholar 

  60. Labots, M., Gotink, K.J., Dekker, H., Azijli K Mijn., Huijts, C.M., Piersma S.R., Jiménez, C.R., and Verheul, H.M.W., Experimental and Molecular Medicine, 2016, vol. 48, e279. doi 10.1038/emm.2016.114

    Article  Google Scholar 

  61. Penque, D., Proteomics—Clin. Appl., 2009, vol. 3, no. 2, pp. 155–172. doi 10.1002/prca.200800025

    Article  CAS  Google Scholar 

  62. Miller, I., Crawford, J., and Gianazza, E., Proteomics, 2006, vol. 6, pp. 5385–5408. doi 10.1002/pmic.200600323

    Article  CAS  Google Scholar 

  63. Pal, M., Moffa, A., Sreekumar, A., Ethier, S.P., Barder, T.J., Chinnaiyan, A., and Lubman, D.M., Anal. Chem., 2006, vol. 78, pp. 702–710. doi 10.1021/ac0511243

    Article  CAS  Google Scholar 

  64. Kaufmann, H., Bailey, J.E., and Fussenegger, M., Proteomics, 2001, vol. 1, pp. 194–199. doi 10.1002/1615-9861(200102)1:2<194::AID-PROT194>3.0.CO;2-K

    Article  CAS  Google Scholar 

  65. Lin, H.-J., Hsieh, F.-C., Song, H., and Lin, J., Br. J. Cancer, 2005, vol. 93, pp., 1372–1381. doi 10.1038/sj.bjc.6602862

  66. Lisitsa, A., Moshkovskii, S., Chernobrovkin, A., Ponomarenko, E., and Archakov, A., Exp. Rev. Proteomics, 2014, vol. 11, pp. 121–129. doi 10.1586/14789450.2014.878652

    Article  CAS  Google Scholar 

  67. Beausoleil, S.A., Villén, J., Gerber, S.A., Rush, J., and Gygi, S.P., Nat. Biotechnol., 2006, vol. 24, pp. 1285–1292. doi 10.1038/nbt1240

    Article  CAS  Google Scholar 

  68. Savitski, M.M., Lemeer, S., Boesche, M., Lang, M., Mathieson, T., Bantscheff, M., and Kuster, B., Mol. Cell. Proteomics, 2011, vol. 10, M110.003830-M110.003830. doi 10.1074/mcp.M110.003830

  69. Taus, T., Köcher, T., Pichler, P., Paschke, C., Schmidt, A., Henrich, C., and Mechtler, K., J. Proteome Res., 2011, vol. 10, pp. 5354–5362. doi 10.1021/pr200611n

    Article  CAS  Google Scholar 

  70. Nakagami, H., Sugiyama, N., Mochida, K., Daudi, A., Yoshida, Y., Toyoda, T., Tomita, M., Ishihama, Y., and Shirasu, K., Plant Physiol., 2010, vol. 153, pp. 1161–1174. doi 10.1104/pp.110.157347

    Article  CAS  Google Scholar 

  71. Schroeder, M.J., Shabanowitz, J., Schwartz, J.C., Hunt, D.F., and Coon, J.J., Anal. Chem., 2004, vol. 76, pp. 3590–3598. doi 10.1021/ac0497104

    Article  CAS  Google Scholar 

  72. Beck, A., Deeg, M., Moeschel, K., Schmidt, E.K., Schleicher, E.D., Voelter, W., Häring, H.U., and Lehmann, R., Rapid Commun. Mass Spectrom., 2001, vol. 15, pp. 2324–2333. doi 10.1002/rcm.511

    Article  CAS  Google Scholar 

  73. Steen, H., Küster, B., Fernandez, M., Pandey, A., and Mann, M., Anal. Chem., 2001, vol. 73, pp. 1440–1448.

    Article  CAS  Google Scholar 

  74. Mann, M., Ong, S.E., Grønborg, M., Steen, H., Jensen, O.N., and Pandey, A., Trends in Biotechnology, 2002, vol. 20, pp. 261–268. doi 10.1016/S0167-7799(02)01944-3

    Article  CAS  Google Scholar 

  75. Huang, J., Wang, F., Ye, M., and Zou, H. J. Chromatogr. A, 2014, vol. 1372, pp. 1–17. doi 10.1016/j.chroma.2014.10.107

  76. Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M.L., Jensen, L.J., Gnad, F., Cox, J., Jensen, T.S., Nigg, E.A., Brunak, S., and Mann, M., Sci. Signal., 2010, vol. 3, ra3–ra3. doi 10.1126/scisignal.2000 475

  77. Sharma, K., D’Souza, R.C.J., Tyanova, S., Schaab, C., Wisniewski, J.R., Cox, J., and Mann, M., Cell Rep., 2014, vol. 8, pp. 1583–1594. doi 10.1016/j.celrep. 2014.07.036

    Article  CAS  Google Scholar 

  78. Mayya, V., Lundgren, D.H., Hwang, S.-I., Rezaul, K., Wu, L., Eng, J.K., Rodionov, V., and Han, D.K., Sci. Signal., 2009, vol. 2, ra46–ra46. doi 10.1126/scisignal.2000007

  79. Grønborg, M., Kristiansen, T.Z., Stensballe, A., Andersen, J.S., Ohara, O., Mann, M., Jensen, O.N., and Pandey, A., Mol. Cell. Proteomics, 2002, vol. 1, pp. 517–527. doi 10.1074/MCP.M200010-MCP200

    Article  Google Scholar 

  80. Kopylov, A.T. and Zgoda, V.G., Biomed. Khim., 2007, vol. 53, pp. 613–643.

    CAS  Google Scholar 

  81. Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M., Cell, 2006, vol. 127, pp. 635–648. doi 10.1016/j.cell.2006.09.026

  82. Kondrat, R.W., McClusky, G.A., and Cooks, R.G., Anal. Chem., 1978, vol. 50, pp. 2017–2021. doi 10.1021/ac50036a020

    Article  CAS  Google Scholar 

  83. Picotti, P. and Aebersold, R., Nat. Methods, 2012, vol. 9, pp. 555–566. doi 10.1038/nmeth.2015

    Article  CAS  Google Scholar 

  84. Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D.A., and White, F.M., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 5860–5865. doi 10.1073/pnas.0608638104

    Article  CAS  Google Scholar 

  85. Narumi, R., Murakami, T., Kuga, T, Adachi, J., Shiromizu, T., Muraoka, S., Kume, H., Kodera, Y., Matsumoto, M., Nakayama, K., Miyamoto, Y., Ishitobi, M., Inaji, H., Kato, K., and Tomonaga, T., J. Proteome Res., 2012, vol. 11, pp. 5311–5322. doi 10.1021/pr3005474

    Article  CAS  Google Scholar 

  86. Yu, Y., Anjum, R., Kubota, K., Rush, J., Villen, J., and Gygi, S.P., Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 11606–11611. doi 10.1073/pnas.0905165106

    Article  CAS  Google Scholar 

  87. Cuomo, A., Moretti, S., Minucci, S., and Bonaldi, T., Amino Acids, 2011, vol. 41, pp. 387–399. doi 10.1007/s00726-010-0668-2

    Article  CAS  Google Scholar 

  88. Darwanto, A., Curtis, M.P., Schrag, M., Kirsch, W., Liu, P., Xu, G., Neidigh, J.W., and Zhang, K., J. Biol. Chem., 2010, vol. 285, pp. 21868–21876. doi 10.1074/jbc.M110.126813

    Article  CAS  Google Scholar 

  89. LeRoy, G., DiMaggio, P.A., Chan, E.Y., Zee, B.M., Blanco, M., Bryant, B., Flaniken, I.Z., Liu, S., Kang, Y., Trojer, P., and Garcia, B.A., Epigenetics & Chromatin, 2013, vol. 6, p. 20. doi 10.1186/1756-8935-6-20

  90. Jaffe, J.D., Wang, Y., Chan, H.M., Zhang, J., Huether, R., Kryukov, G.V, Bhang, H.C., Taylor, J.E., Hu, M., Englund, N.P., Yan, F., Wang, Z., Robert McDonald, E., Wei, L., Ma, J., Easton, J., Yu, Z., deBeaumount, R., Gibaja, V., Venkatesan, K., Schlegel, R., Sellers, W.R., Keen, N., Liu, J., Caponigro, G., Barretina, J., Cooke, V.G., Mullighan, C., Carr, S.A., Downing, J.R., Garraway, L.A., and Stegmeier, F., Nature Genetics, 2013, vol. 45, pp. 1386–1391. doi 10.1038/ng.2777

    Article  CAS  Google Scholar 

  91. Shen, Z., Wang, B., Luo, J., Jiang, K., Zhang, H., Mustonen, H., Puolakkainen, P., Zhu, J., Ye, Y., and Wang, S., J. Proteomics, 2016, vol. 142, pp. 24–32. doi 10.1016/j.jprot.2016.05.002

    Article  CAS  Google Scholar 

  92. Gao, J., Liao, R., Yu, Y., Zhai, H., Wang, Y., Sack, R., Peters, A.H.F.M., Chen, J., Wu, H., Huang, Z., Hu, M., Qi, W., Lu, C., Atadja, P., Oyang, C., Li, E., Yi, W., and Zhou, S., Anal. Chem., 2014, vol. 86, pp. 9679–9686. doi 10.1021/ac502333a

    Article  CAS  Google Scholar 

  93. Udeshi, N.D., Svinkina, T., Mertins, P., Kuhn, E., Mani, D.R., Qiao, J.W., and Carr, S.A., Mol. Cell. Proteomics, 2013, vol. 12, pp. 825–831. doi 10.1074/mcp.O112.027094

    Article  CAS  Google Scholar 

  94. Kim, W., Bennett, E.J., Huttlin, E.L., Guo, A., Li, J., Possemato, A., Sowa, M.E., Rad, R., Rush, J., Comb, M.J., Harper, J.W., and Gygi, S.P., Mol. Cell, 2011, vol. 44, pp. 325–340. doi 10.1016/j.molcel. 2011.08.025

    Article  CAS  Google Scholar 

  95. Meierhofer, D., Wang, X., Huang, L., and Kaiser, P., J. Proteome Res., 2008, vol. 7, pp. 4566–4576. doi 10.1021/pr800 468j

    Article  CAS  Google Scholar 

  96. Danielsen, J.M.R., Sylvestersen, K.B., Bekker-Jensen, S., Szklarczyk, D., Poulsen, J.W., Horn, H., Jensen, L.J., Mailand, N., and Nielsen, M.L., Mol. Cell. Proteomics, 2011, vol. 10, M110.003590-M110.003590. doi 10.1074/mcp.M110.003590

  97. Wu, J., Qin, H., Li, T., Cheng, K., Dong, J., Tian, M., Chai, N., Guo, H., Li, J., You, X., Dong, M., Ye, M., Nie, Y., Zou, H., and Fan, D., Oncotarget, 2016, vol. 7, pp. 25315–25327. doi 10.18632/oncotarget.8287

    Article  Google Scholar 

  98. Lattova, E., Bartusik, D., Spicer, V., Jellusova, J., Perreault, H., and Tomanek, B., Mol. Cell. Proteomics, 2011, vol. 10, no. 9, M111.007765–M111.007765. doi 10.1074/mcp.M111.007765

    Google Scholar 

  99. Pan, S., Brentnall, T.A., and Chen, R., W. J. Gastroenterol., 2016, vol. 22, p. 9288. doi 10.3748/wjg.v22.i42.9288

  100. Fratta, E., Montico, B., Rizzo, A., Colizzi, F., Sigalotti, L., and Dolcetti, R., Oncotarget, 2016, vol. 7, pp. 57327–57350. doi 10.18632/oncotarget.10033

    Article  Google Scholar 

  101. Varki, A., Kannagi, R., and Toole, B.P., Glycosylation Changes in Cancer. Essentials of Glycobiology, 2009.

  102. Quin, R.J. and McGuckin, M.A., Int. J. Cancer, 2000, vol. 87, pp. 499–506. doi 10.1002/1097-0215(20000815)87:4<499::AID-IJC6>3.0.CO;2-9

    Article  CAS  Google Scholar 

  103. Horm, T.M. and Schroeder, J.A., Cell Adh. Migr., 2013, vol. 7, pp. 187–198. doi 10.4161/cam.23131

    Article  Google Scholar 

  104. DeNardo, B.D., Holloway, M.P., Ji, Q., Nguyen, K.T., Cheng, Y., Valentine, M.B., Salomon, A., and Altura, R.A., PLoS One, 2013, vol. 8. doi 10.1371/journal.pone.0082513

  105. Ahmad, I., Iwata, T., and Leung, H.Y., Biochim. Biophys. Acta—Mol. Cell Res., 2012, vol. 1823, pp. 850–860. doi 10.1016/j.bbamcr.2012.01.004

    Article  CAS  Google Scholar 

  106. Denduluri, S.K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M.K., Ye, J., Wei, Q., Wang, J., Zhao, L., and Luu, H.H., Genes Dis., 2015, vol. 2, pp. 13–25. doi 10.1016/j.gendis.2014.10.004

    Article  CAS  Google Scholar 

  107. Cho, H.-S., Hayami, S., Toyokawa, G., Maejima, K., Yamane, Y., Suzuki, T., Dohmae, N., Kogure, M., Kang, D., Neal, D.E., Ponder, B.A.J., Yamaue, H., Nakamura, Y., and Hamamoto, R., Neoplasia, 2012, vol. 14, pp. 476–486.

    Article  CAS  Google Scholar 

  108. Wu, X., Zahari, M.S., Renuse, S., Nirujogi, R.S., Kim, M.S., Manda, S.S., Stearns, V., Gabrielson, E., Sukumar, S., and Pandey, A., Mol. Cell Proteomics, 2015, vol. 14, pp. 2887–2900. doi 10.1074/mcp.M115.050484

    Article  CAS  Google Scholar 

  109. Gao, Z., Zhang, J., Bi, M., Han, X., Han, Z., Wang, H., and Ou, Y., Int. J. Clin. Exp. Pathol., 2015, vol. 8, pp. 4791–4798.

    CAS  Google Scholar 

  110. Hoshino, R., Chatani, Y., Yamori, T., Tsuruo, T., Oka, H., Yoshida, O., Shimada, Y., Ari-i, S., Wada, H., Fujimoto, J., and Kohno, M., Oncogene, 1999, vol. 18, pp. 813–822. doi 10.1038/sj.onc.1202367

    Article  CAS  Google Scholar 

  111. Baranski, Z., Booij, T.H., Kuijjer, M.L., Jong, Y., Cleton-Jansen, A.-M., Price, L.S., van de Water, B, Bovée, J.V.M.G., Hogendoorn, P.C.W., Danen, E.H.J., Genes Cancer, 2015, November:503. doi 10.18632/genesandcancer.91

    Google Scholar 

  112. Dai, C. and Gu, W., Trends Mol. Med., 2010, vol. 16, pp. 528–536. doi 10.1016/j.molmed.2010.09.002

    Article  CAS  Google Scholar 

  113. Knudsen, E.S. and Knudsen, K.E., Nat. Rev. Cancer, 2008, vol. 8, pp. 714–724. doi 10.1038/nrc2401

    Article  CAS  Google Scholar 

  114. Lin, P.-C., Yang, Y.-F., Tyan, Y.-C., Hsiao, E.S.L., Chu, P.-C., Lee, C.-T., Lee, J.-C., Chen, Y.-M.A., and Liao, P.-C., PLoS One, 2016, vol. 11. doi 10.1371/journal.pone.0158844

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Zavialova.

Additional information

Original Russian Text © M.G. Zavialova, V.G. Zgoda, E.N. Nikolaev, 2017, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavialova, M.G., Zgoda, V.G. & Nikolaev, E.N. Analysis of the role of protein phosphorylation in the development of diseases. Biochem. Moscow Suppl. Ser. B 11, 203–218 (2017). https://doi.org/10.1134/S1990750817030118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750817030118

Keywords

Navigation