Skip to main content
Log in

Scaffold Hopping Computational Approach for Searching Novel β-Lactamase Inhibitors

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract—

We present a novel computational ligand-based virtual screening approach with scaffold hopping capabilities for the identification of novel inhibitors of β-lactamases which confer bacterial resistance to β‑lactam antibiotics. The structures of known β-lactamase inhibitors were used as query ligands, and a virtual in silico screening a database of 8 million drug-like compounds was performed in order to select the ligands with similar shape and charge distribution. A set of numerical descriptors was used such as chirality, eigen spectrum of matrices of interatomic distances and connectivity together with higher order moment invariants that showed their efficiency in the field of pattern recognition but have not yet been employed in drug discovery. The developed scaffold-hopping approach was applied for the discovery of analogues of four allosteric inhibitors of serine β-lactamases. After a virtual in silico screening, the effect of two selected ligands on the activity of TEM type β-lactamase was studied experimentally. New non-β-lactam inhibitors were found that showed more effective inhibition of β-lactamases compared to query ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Schuffenhauer, A., WIREs Comput.Mol. Sci., 2012, vol. 2, pp. 842−867. https://doi.org/10.1002/wcms.1106

    Article  CAS  Google Scholar 

  2. Schneider, G., Neidhart, W., Giller, T., and Schmid, G., Angew Chem. Int. Ed. Engl., 1999, vol. 38, pp. 2894−2896.

    Article  CAS  Google Scholar 

  3. Sun, H., Tawa, G., and Wallqvist, A., Drug Discov. Today, 2012, vol. 17, pp. 310−324. https://doi.org/10.1016/j.drudis.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  4. Brown, N. and Jacoby, E., Mini-Rev. Med. Chem., 2006, vol. 6, pp. 1217−1229. https://doi.org/10.2174/138955706778742768

    Article  CAS  PubMed  Google Scholar 

  5. Mauser, H. and Guba, W., Curr. Opin. Drug Discov. Devel., 2008, vol. 11, pp. 365−374.

    CAS  PubMed  Google Scholar 

  6. Ballester, P.J. and Richards, W.G., J. Comput. Chem., 2007, vol. 28, pp. 1711−1723. https://doi.org/10.1002/jcc.20681

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Q., Birod, K., Angioni, C., Grösch, S., Geppert , T., Schneider, P., Rupp, M., and Schneider, G., PLoS One, 2011, vol. 6, e21554. https://doi.org/10.1371/journal.pone.0021554

  8. Willett, P., Methods Mol. Biol., 2011, vol. 672, pp. 133–158. https://doi.org/10.1007/978-1-60761-839-3_5

    Article  CAS  PubMed  Google Scholar 

  9. Rogers, D. and Hahn, M., J. Chem. Inf. Model, 2010, vol. 50, pp. 742–754. https://doi.org/10.1021/ci100050t

    Article  CAS  PubMed  Google Scholar 

  10. Hofmann, B., Franke, F., Proschak, E., Tanrikulu, Y., Schneider, P., Steinhilber, D., and Schneider, G., Chem. Med. Chem., 2008, vol. 3, pp. 1535–1538. https://doi.org/10.1002/cmdc.200800153

    Article  CAS  PubMed  Google Scholar 

  11. Daylight Chemical Information Systems. Available at: https://www.daylight.com (Accessed October 10, 2019).

  12. Eckert, H. and Bajorath, J., Drug Discov. Today, 2007, vol. 12, pp. 225−233. https://doi.org/10.1016/j.drudis.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  13. Grant, J.A., Gallardo, M.A., and Pickup, B.T., J. Comp. Chem., 1996, vol. 17, pp. 1653–1666. https://doi.org/10.1002/(SICI)1096-987X(19961115)17:14<1653::AID-JCC7>3.0.CO;2-K

    Article  CAS  Google Scholar 

  14. Rush, T.S., Grant, J.A., Mosyak, L., and Nicholls, A., J. Med. Chem., 2005, vol. 48, pp. 1489–1495. https://doi.org/10.1021/jm040163o

    Article  CAS  PubMed  Google Scholar 

  15. OpenEye Scientific. Available at: http://www.eyesopen.com (Accessed October 10, 2019).

  16. Yan, X., Li, J., Liu, Z., Zheng, M., Ge, H., and Xu, J., J. Chem. Inf. Model., 2013, vol. 53, pp. 1967−1978. https://doi.org/10.1021/ci300601q

    Article  CAS  PubMed  Google Scholar 

  17. Carosati, E., Sciabola, S., and Cruciani, G., J. Med. Chem., 2004, vol. 47, pp. 5114– 5125. https://doi.org/10.1021/jm0498349

    Article  CAS  PubMed  Google Scholar 

  18. Jenkins, J.L., Glick, M., and Davies, J.W., J. Med. Chem., 2004, vol. 47, pp. 6144–6159. https://doi.org/10.1021/jm049654z

    Article  CAS  PubMed  Google Scholar 

  19. Roy, A. and Skolnick, J., Bioinformatics, 2015, vol. 31, pp. 539-544. https://doi.org/10.1093/bioinformatics/btu692

    Article  CAS  PubMed  Google Scholar 

  20. Kirchmair, J., Wolber, G., Laggner, C., and Langer, T., J. Chem. Inf. Model., 2006, vol. 46, pp. 1848−1861. https://doi.org/10.1021/ci060084g

    Article  CAS  PubMed  Google Scholar 

  21. Sneader, W., Drug Prototypes and Their Exploitation, New York: Willey in Chichester, 1996.

    Google Scholar 

  22. Wavhale, R.D., Martis, E.A.F., Ambre, P.K., Wan, B., Franzblau, S.G., Iyer, K.R., Raikuvar, K., Macegoniuk, K., Berlicki, L., Nandan, S.R., and Coutin-ho, E.C., Bioorg. Med. Chem., 2017, vol. 25, pp. 4835−4844. https://doi.org/10.1016/j.bmc.2017.07.034

    Article  CAS  PubMed  Google Scholar 

  23. Naylor, N.R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., Knight, G.M., and Robotham, J.V., Antimicrob. Resist. Infect. Control, 2018, vol. 7, 58. https://doi.org/10.1186/s13756-018-0336-y

  24. Fair, R.J. and Tor, Y., Perspect. Medicin. Chem., 2014, vol. 6, pp. 25−64. https://doi.org/10.4137/PMC.S14459

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eichenberger, E.M. and Thaden, J.T., Antibiotics, 2019, vol. 8, 37. https://doi.org/10.3390/antibiotics8020037

    Article  CAS  PubMed Central  Google Scholar 

  26. Munita, J.M. and Arias, C.A., Microbiol. Spectr., 2016, vol. 4, pp. 1−37. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

    Article  CAS  Google Scholar 

  27. Bush, K., Antimicrob. Agents Chemother., 2018, vol. 62, pii: e01076-18. https://doi.org/10.1128/AAC.01076-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bush K. and Bradford, P.A., Nat. Rev. Microbiol., 2019, vol. 17, pp. 295−306. https://doi.org/10.1038/s41579-019-0159-8

    Article  CAS  PubMed  Google Scholar 

  29. King, D.T., Sobhanifar, S., and Strynadka, N.C.J., Protein Sci., 2016, vol. 25, pp. 787–803. https://doi.org/10.1002/pro.2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Drawz, S.M. and Bonomo, R.A., Clin. Microbiol. Rev., 2010, vol. 23, pp. 160–201. https://doi.org/10.1128/CMR.00037-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wright, H., Bonomo, R.A., and Paterson, D.L., Clin. Microbiol. Infect., 2017, vol. 23, pp. 704–712. https://doi.org/10.1016/j.cmi.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  32. Docquier, J.D. and Mangani, S., Drug Resist. Updat., 2018, vol. 36, pp. 13–29. https://doi.org/10.1016/j.drup.2017.11.002

    Article  PubMed  Google Scholar 

  33. Tuon, F.F., Rocha, J.L., and Formigoni-Pinto, M.R., Infection, 2018, vol. 46, pp. 165−181. https://doi.org/10.1007/s15010-017-1096-y

    Article  CAS  PubMed  Google Scholar 

  34. Blizzard, T.A., Chen, H., Kim, S., Wu, J., Bodner, R., Gude, C., Imbriglio, J., Young, K., Park, Y.W., Ogawa, A., Raghoobar, S., Hairston, N., Painter, R.E., Wisniewski, D., Scapin, G., Fitzgerald, P., Sharma N., Lu, J., Ha, S., Hermes, J., and Hammond, M.L., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 780−785. https://doi.org/10.1016/j.bmcl.2013.12.101

    Article  CAS  PubMed  Google Scholar 

  35. Bush, K. and Page, M.G.P., J. Pharmacokinet. Pharmacodyn., 2017, vol. 44, pp. 113−132. https://doi.org/10.1007/s10928-017-9506-4

    Article  CAS  PubMed  Google Scholar 

  36. Wu, G. and Cheon, E., Expert Opin. Pharmacother., 2018, vol. 19, pp. 1495−1502. https://doi.org/10.1080/14656566.2018.1512586

    Article  CAS  PubMed  Google Scholar 

  37. Krajnc, A., Lang, P.A., Panduwawala, T.D., Brem, J., and Schofield, S.J., Curr. Opin. Chem. Biol., 2019, vol. 50, pp. 101–110. https://doi.org/10.1016/j.cbpa.2019.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giddins, M.J., Macesic, N., Annavajhala, M.K., Stump, S., Khan, S., McConville, T.H., Mehta, M., Gomez-Simmonds, A., and Uhlemann, A.C., Antimicrob. Agents Chemother., 2018, vol. 62, pii: e02101-17. https://doi.org/10.1128/AAC.02101-17

    Article  PubMed  PubMed Central  Google Scholar 

  39. Both, A., Buttner, H., Huang, J., Perbandt, M., Belmar Campos, C., Christner, M., et al., J. Antimicrob. Chemother., 2017, vol. 72, pp. 2483−2488. https://doi.org/10.1093/jac/dkx179

    Article  CAS  PubMed  Google Scholar 

  40. Horn, J.R. and Schoichet, B.K., J. Mol. Biol., 2004, vol. 336, pp. 1283−1291. https://doi.org/10.1016/j.jmb.2003.12.068

    Article  CAS  PubMed  Google Scholar 

  41. Chen, Y. and Schoichet, B.K., Nat. Chem. Biol., 2009, vol. 5, pp. 358−364. https://doi.org/10.1038/nchembio.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Langer, G.G., Evrard, G.X., Carolan, C.G., and Lamzin, V.S., J. Mol. Biol., 2012, vol. 419, pp. 211–222. https://doi.org/10.1016/j.jmb.2012.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hattne, J. and Lamzin, V.S., Acta Cryst. D, 2008, vol. 64, pp. 834−842. https://doi.org/10.1107/S0907444908014327

    Article  CAS  Google Scholar 

  44. Hattne, J. and Lamzin, V.S., J. R. Soc. Interface, 2011, vol. 8, pp. 144−151. https://doi.org/10.1098/rsif.2010.0297

    Article  CAS  PubMed  Google Scholar 

  45. Heuser P., Langer G.G., Lamzin V.S., Acta Cryst. D, 2009, vol. 65, pp. 690−696. https://doi.org/10.1107/S090744490901991X

  46. Carolan, C.G. and Lamzin, V.S., Acta Cryst. D, 2014, vol. 70, pp. 1844−1853. https://doi.org/10.1107/S1399004714008578

    Article  CAS  Google Scholar 

  47. Tabachnick, B.G. and Fidell, L.S., in Using Multivariate Statistics, 3rd edn., New York: Harper Collins, 1996.

    Google Scholar 

  48. Burden, F.R., J. Chem. Inf. Comput. Sci., 1989, vol. 29, pp. 225–227.

    Article  CAS  Google Scholar 

  49. Burden, F.R., Quant. Struct.-Act. Relat., 1997, vol. 16, pp. 309–314.

    Article  CAS  Google Scholar 

  50. Marcus, M. and Smith, T.R., Linear Multilinear Algebra, 1989, vol. 25, pp. 219–230.

    Article  Google Scholar 

  51. Sadjadi, F.A. and Hall, E.L., IEEE Trans. Pattern Anal. Mach. Intell., 1980, vol. 2, pp. 127−136.

    Article  CAS  Google Scholar 

  52. Lo, C.H. and Don, H.S., IEEE Trans. Pattern Anal. Mach. Intell., 1989, vol. 11, pp. 1053−1064.

    Article  Google Scholar 

  53. Grigorenko, V.G., Andreeva, I.P., Rubtsova, M.Y., Deygen, I.M., Antipin, R.L., Majouga, A.G., Egorov, A.M., Beshnova, D.A., Kallio, J., Hackenberg, C., and Lamzin, V.S., Biochimie, 2017, vol. 132, pp. 45−53. https://doi.org/10.1016/j.biochi.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  54. Bebrone, C., Moali, C., Mahy, F., Rival, S., Docquier, J.D., Rossolini,G.M., Fastrez, J., Pratt, R.F., Frère, J.M., and Galleni, M., Antimicrob. Agents Chemother., 2001, vol. 45, pp. 1868−1871.

    Article  CAS  Google Scholar 

  55. Antipin, R.L., Beshnova, D.A., Petrov, R.A., Shiryaeva, A.S., Andreeva, I.P., Grigorenko, V.G., Rubtsova, M.Yu., Majouga, A.G., Lamzin, V.S., and Egorov, A.M., BMC Lett., 2017, vol. 27, pp. 1588−1592. https://doi.org/10.1016/j.bmcl.2017.02.025

    Article  CAS  Google Scholar 

  56. Stepto, R., Chang, T., Kratochvíl, P., Hess, M., Horie, K., Sato, T., and Vohlídal, J., Pure Appl. Chem., 2015, vol. 87, pp. 71−120.

    Article  CAS  Google Scholar 

Download references

Funding

The work on production of recombinant β-lactamase TEM-171 and inhibitory analysis has been supported by the Russian Science Foundation (project 15-14-00014-C). Virtual screening of the inhibitors was supported by the EMBL Interdisciplinary Postdocs (EIPOD) fellowship programme under Marie Skłodowska-Curie COFUND (grant no. 291 772) from the European Commission for the postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Egorov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans or using animals as experimental objects.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beshnova, D.A., Carolan, C., Grigorenko, V.G. et al. Scaffold Hopping Computational Approach for Searching Novel β-Lactamase Inhibitors. Biochem. Moscow Suppl. Ser. B 14, 127–135 (2020). https://doi.org/10.1134/S199075082002002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199075082002002X

Keywords:

Navigation