Skip to main content
Log in

Oxidation of metal nanoparticles: Experiment and model

  • Special Issue: Theoretical Modeling of Energetics and Kinetics of Chemical Processes on Transition Metal Surfaces
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Studies of oxygen adsorption on a metal surface are reviewed. The relationship between oxygen adsorption and the initial stage of oxidation is considered. Current theories of low-temperature oxidation and experimental data obtained during recent decades are reviewed. Thermodynamic aspects of low-temperature oxidation of metal nanoparticles and their relationship with the physical properties of metal nanoparticles are discussed. An original method for investigating the oxidation kinetics of ferromagnetic nanoparticles is described. The technique is based on continuous measurements of magnetization in the course of oxidation under controlled conditions. A stochastic model of oxidation is presented, which is based on the atomistic concepts of Cabrera-Mott theory. Oxidation is regarded as a random sequence of elementary acts (oxygen adsorption, oxygen ionization, metal ionization, metal ion migration, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Puntes, W. J. Parak, and A. P. Alivisatos, Eur. Cells Mater. 3, 128 (2002).

    Google Scholar 

  2. Y. B. Pithawalla, M. S. El-Shall, S. C. Deevi, et al., J. Phys. Chem. B 105, 2085 (2001)

    Article  CAS  Google Scholar 

  3. T. L. Hill, Thermodynamics of Small Systems (Benjamin, New York, 1963).

    Google Scholar 

  4. I. D. Morokhov, V. I. Petinov, L. I. Trusov, et al., Usp. Fiz. Nauk 133, 653 (1981).

    CAS  Google Scholar 

  5. M. R. Hoare and P. Pal, Adv. Phys. 20, 77 (1970).

    Google Scholar 

  6. O. M. Poltorak, Lectures in Chemical Thermodynamics (Vysshaya Shkola, Moscow, 1971), p. 254 [in Russian].

    Google Scholar 

  7. Yu. I. Petrov, Physics of Small Particles (Nauka, Moscow, 1982), p. 356 [in Russian].

    Google Scholar 

  8. H. Bi, W. Cai, C. Kan, et al., J. Appl. Phys. 92, 7491 (2002).

    Article  CAS  Google Scholar 

  9. R. Kofman, P. Cheyssac, A. Aouaj, et al., Surf. Sci. 303, 231 (1994).

    Article  CAS  Google Scholar 

  10. J. D. Verhoeven, Fundamentals of Physical Metallurgy (Wiley, New York, 1975), p. 202.

    Google Scholar 

  11. P. A. Chernavskii, Zh. Fiz. Khim. 78, 1240 (2004).

    Google Scholar 

  12. N. T. Gladkikh and V. N. Khotkevich, Ukr. Fiz. Zh. 16, 1429 (1971).

    CAS  Google Scholar 

  13. J. P. Chen, C. M. Sorensen, and K. J. Klabunde, Phys. Rev. B 51, 11527 (1995).

    Article  CAS  Google Scholar 

  14. E. L. Nagaev, Usp. Fiz. Nauk 162, 49 (1992).

    Article  CAS  Google Scholar 

  15. S. A. Nepijko, E. Pippel, and J. Woltersdorf, Phys. Stat. Sol. A 61, 469 (1980).

    Article  CAS  Google Scholar 

  16. M. Y. Gamarnik and Y. Y. Sidorin, Phys. Stat. Sol. B 156, K–1 (1989).

    Article  Google Scholar 

  17. A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  18. A. Bielanski and J. Haber, Oxygen in Catalysis (Marcel Dekker, New York, 1991).

    Google Scholar 

  19. W. A. Mannstadt and A. Freeman, Phys. Rev. B 51, 14616 (1995).

    Article  Google Scholar 

  20. R. Schennach and E. Bechtold, Surf. Sci. 369, 277 (1996).

    Article  CAS  Google Scholar 

  21. A. Borg, A. M. Hilmen, and E. Bergene, Surf. Sci. 306, 10 (1994).

    Article  CAS  Google Scholar 

  22. C. A. Taft, T. C. Gulmaraes, A. C. Pavao, and W. A. Lester, Int. Rev. Phys. Chem. 18, 163 (1999).

    Article  CAS  Google Scholar 

  23. P. D. Nolan, M. C. Wheeler, J. E. Davis, and C. B. Mullins, Acc. Chem. Res. 31, 798 (1998).

    Article  CAS  Google Scholar 

  24. A. N. Artsyukovich and V. A. Ukraintsev, Surf. Sci. 347, 303 (1996).

    Article  Google Scholar 

  25. B. G. Briner, M. Doering, H.-P. Rust, and A. M. Bradshaw, Phys. Rev. Lett. 78, 1516 (1997).

    Article  CAS  Google Scholar 

  26. J. Jacobsen, B. Hammer, K. W. Jacobsen, and J. K. Norskov, Phys. Rev. B 52, 14954 (1995).

    Article  CAS  Google Scholar 

  27. H. Brune, J. Wintterlin, R. J. Behm, and G. Ertl, Phys. Rev. Lett. 68, 624 (1992).

    Article  CAS  Google Scholar 

  28. G. Wahnstrom, A. B. Lee, and J. Stroquist, J. Chem. Phys. 105, 326 (1996).

    Article  Google Scholar 

  29. M. Schmid, G. Leonardelli, R. Tscheliebnig, et al., Surf. Sci. Lett. 478, L355 (2001).

    Article  CAS  Google Scholar 

  30. T. Matsumoto, R. Bennett, P. Stone, et al., Surf. Sci. 471, 225 (2001).

    Article  CAS  Google Scholar 

  31. S. Helveg and P. L. Hansen, Catal. Today 111, 68 (2006).

    Article  CAS  Google Scholar 

  32. W. Ruhl, Z. Phys. 176, 409 (1963).

    Article  Google Scholar 

  33. G. Chottiner and R. E. Glover, J. Vac. Sci. Technol. A 15, 429 (1978).

    Article  CAS  Google Scholar 

  34. F. Gronlund, J. Chim. Phys. 53, 60 (1956).

    Google Scholar 

  35. M. W. Roberts and C. S. McKee, Chemistry of the Metal-Gas Interface (Oxford Univ. Press Oxford, 1978).

    Google Scholar 

  36. J. C. Yang, D. Evan, and L. Tropia, Appl. Phys. Lett. 81, 241 (2002).

    Article  CAS  Google Scholar 

  37. G. Tammann, Z. Anorg. Chem. 111, 78 (1920).

    Article  Google Scholar 

  38. C. Wagner, Z. Phys. Chem. (B) 21, 25 (1936).

    Google Scholar 

  39. N. Cabrera and N. F. Mott, Rep. Prog. Phys. 58, 163 (1949).

    Article  Google Scholar 

  40. R. Ghez, J. Chem. Phys. 58, 1838 (1973).

    Article  CAS  Google Scholar 

  41. I. Popova, V. Zhukov, and J. T. Yates Jr., Phys. Rev. Lett. 89, 276101 (2002).

    Article  CAS  Google Scholar 

  42. A. T. Fromhold Jr., Theory of Metal Oxidation, Vol. 1: Fundamentals (North-Holland, Amsterdam, 1976); Vol. 2: Space Charges (North-Holland, Amsterdam, 1980).

    Google Scholar 

  43. E. Fromm, in Nonstoichiometric Compounds, Surfaces, Grain Boundaries, and Structural Defects, Ed. by J. Nowotny and W. Wepner (Klumer, Boston, 1989), pp. 523–534.

    Google Scholar 

  44. M. Martin and E. Fromm, J. Alloys Comp. 258, 7 (1997).

    CAS  Google Scholar 

  45. H. Cichy and E. Fromm, Thin Solid Films 195, 147(1991).

    Article  CAS  Google Scholar 

  46. F. P. Fehlner, Low Temperature Oxidation, The Role of Vitreous Oxides (Wiley, New York, 1986).

    Google Scholar 

  47. S. Chang and W. H. Wade, J. Phys. Chem. 74, 2484(1970).

    Article  CAS  Google Scholar 

  48. T. Do, S. J. Splinter, C. Chen, and N. S. McIntyre, Surf. Sci. 387, 192 (1997).

    Article  CAS  Google Scholar 

  49. A. P. Grosvenor, B. A. Kobe, and N. S. McIntyre, Surf. Sci. 574, 317 (2005).

    Article  CAS  Google Scholar 

  50. D. D. Eley and P. R. Wilkinson, Proc. Roy. Soc. (London) A 254, 327 (1960).

    Article  CAS  Google Scholar 

  51. M. J. Graham, S. I. Ali, and M. Cohen, J. Electrochem. Soc. 117, 513 (1970).

    Article  CAS  Google Scholar 

  52. M. Kurth, P. C. J. Graat, and E. J. Mittemeijer, Thin Solid Films 500, 61 (2006).

    Article  CAS  Google Scholar 

  53. M. Rauh and P. Wißmann, Thin Solid Films 228, 121 (1993).

    Article  CAS  Google Scholar 

  54. G. Zhou and J. C. Yang, Surf. Sci. 531, 359 (2003).

    Article  CAS  Google Scholar 

  55. D. M. Wood, Phys. Rev. Lett. 46, 749 (1981).

    Article  CAS  Google Scholar 

  56. T. C. R. Ruiz, J. C. S. Lopez, M. J. S. de Vega, et al., J. Mater. Chem. 9, 1011 (1999).

    Article  Google Scholar 

  57. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413(1956); 105, 904 (1957).

    Article  Google Scholar 

  58. R. Morel, A. Brenac, and C. Portemont, J. Appl. Phys. 95, 3757 (2004).

    Article  CAS  Google Scholar 

  59. M. Gruyters and D. Riegel, J. Appl. Phys. 88, 6610(2000); Phys. Rev. B 63, 052401 (2001).

    Article  CAS  Google Scholar 

  60. J. H. Kima, S. H. Ehrman, and T. A. Germerb, Appl. Phys. Lett. 84, 1278 (2004).

    Article  CAS  Google Scholar 

  61. X. Phung, J. Groza, E. A. Stach, et al., Mater. Engin. A 359, 261 (2003).

    Article  CAS  Google Scholar 

  62. C. M. Wang, D. R. Baer, L. E. Thomas, et al., J. Appl. Phys. 98, 094308 (2005).

  63. A. D. Smigellkas and E. O. Kirkendall, Trans. AIME 171, 130 (1947).

    Google Scholar 

  64. Y. Yin, R. M. Rioux, C. K. Erdonmez, et al., Science 304, 711 (2004).

    Article  CAS  Google Scholar 

  65. Weiping Cai, Huicai Zhong, and Lide Zhang, J. Appl. Phys. 83, 1705 (1998).

    Article  CAS  Google Scholar 

  66. J. C. Maxwell-Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).

    Article  Google Scholar 

  67. D. Polder and J. H. van Santen, Physica (Amsterdam) 12, 257 (1946).

    Article  Google Scholar 

  68. R. Karmhag, G. A. Niklasson, and M. Nygren, J. Mater. Res. 14, 3051 (1999).

    Article  CAS  Google Scholar 

  69. R. Karmhag, G. A. Niklasson, and M. Nygren, J. Appl. Phys. 85, 1186 (1999).

    Article  CAS  Google Scholar 

  70. R. Karmhag, T. Tesfamichael, and E. Wäkelgård, Sol. Energy 68, 329 (2000).

    Article  CAS  Google Scholar 

  71. T. Hill, M. Mozaffari-Afshar, J. Schmidt, et al., Surf. Sci. 429, 246 (1999).

    Article  CAS  Google Scholar 

  72. F. Bodker, S. Morup, S. W. Charles, and S. Linderoth, J. Magnetism Magnetic Mater. 18, 196 (1999).

    Google Scholar 

  73. P. A. Chernavskii, G. V. Pankina, A. P. Chernavskii, et al., Zh. Fiz. Khim. 80, 1 (2006).

    Google Scholar 

  74. E. A. Moelwyn-Hughes, Physical Chemistry (Pergamon, New York, 1961; Inostrannaya Literatura, Moscow, 1962), Vol. 2, p. 1148.

    Google Scholar 

  75. D. E. Oner, R. Chakarova, I. Zori, and B. Kasemo, J. Chem. Phys. 113, 8869 (2000).

    Article  CAS  Google Scholar 

  76. R. Chakarova, D. E. Oner, I. Zori, and B. Kasemo, Surf. Sci. 472, 63 (2001).

    Article  CAS  Google Scholar 

  77. D. E. Oner, H. Ternow, R. Chakarova, et al., Surf. Sci. 512, L325 (2002).

    Article  CAS  Google Scholar 

  78. P. Vashishta, M. E. Bachlechner, A. Nakano, et al., Appl. Surf. Sci. 182, 258 (2001).

    Article  CAS  Google Scholar 

  79. N. V. Peskov, A. P. Chernavsky, and P. A. Chernavsky, Abstracts from the 17th Conf. on Chemical Reactors “Chemreactor-17”, Atnens-Crete, 2006, pp. 504–506.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Chernavskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernavskii, P.A., Peskov, N.V., Mugtasimov, A.V. et al. Oxidation of metal nanoparticles: Experiment and model. Russ. J. Phys. Chem. B 1, 394–411 (2007). https://doi.org/10.1134/S1990793107040082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793107040082

Keywords

Navigation