Skip to main content
Log in

Overview of catalytic methods for production of next generation biodiesel from natural oils and fats

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Production of biodiesel from natural oils and fats can be achieved using various technologies briefly discussed in this review. A particular appealing concept for production of green diesel is selective catalytic deoxygenation of renewables leading to diesel fuel products. This reaction can be performed over Pd on active carbon supports with saturated and unsaturated fatty acids and their derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Energy Information Administration, Intern. Energy Annual (2003), Table 2.9.

  2. Energy Information Administration, Intern. Energy Annual (2002), DOE/EIA_0219.

  3. S. N. Ege, Organic Chemistry: Structure and Reactivity 3rd ed. (Univ. of Michigan, Toronto, 1994), p. 189.

    Google Scholar 

  4. J._M. Wauquier, Petrolium Refining (Institut Francais Du Petrole, Paris, 1995), Vol. 1, pp. 2–15.

    Google Scholar 

  5. Diesel Fuel Refining and Chemistry, Chevron Fuels and Motor Oils, http://www.chevron.com/products/ourfuels/prodserv/fuels/documents/Diesel_Fuel_Tech_Review.pdf (13.10.2009).

  6. A. Demirbas, Energy Converison Management 43, 2349–2356 (2002).

    Article  CAS  Google Scholar 

  7. H. Fukuda, A. Kondo, and H. Noda, J. Biosci. Bioeng. 91, 405–416 (2001).

    Article  Google Scholar 

  8. M. Fangrui and A. H. Milford, Bioresource Technol. 70, 1–15 (1999).

    Article  Google Scholar 

  9. M. B. Jacobs, The Chemistry and Technology of Food and Food Products, 2nd ed. (1951), pp. 104–121.

  10. A. Srivastava and R. Prasad, Renewable Sustainable Energy Rev. 4, 111–133 (2000).

    Article  CAS  Google Scholar 

  11. D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed. (CRC Press, Boca Raton, FL, 2004).

    Google Scholar 

  12. M. S. Graboski and R. L. McCormick, Progress Energy Combust. 24, 125–164 (1998).

    Article  CAS  Google Scholar 

  13. E. H. Pryde, Fatty Acids (Northern Regional Reas. Center, US Depart. of Agriculture, Peoria, Illinois, Amer. Oil Chemists’ Soc.-Champaign, Illinois, 1979).

    Google Scholar 

  14. Department of Chem. Eng., Inst. Superior Tecn. (Lisbon, 1997). http://journeytoforever.org/biofuel_library/chemoils.html. 13.10.2009.

  15. A. Demirbas, Fuel 77, 1117–1120 (1998).

    Article  CAS  Google Scholar 

  16. Oil Yields and Characteristics, Keith Addison, Journey to Forever, http://journeytoforever.org/biodiesel_yield.html (13.10.2009).

  17. A. S. Ramadhas, S. Jayaray, and C. Maraleedharan, Renewable Energy 29, 727–742 (2004).

    Article  CAS  Google Scholar 

  18. S. V. Ghadge and H. Raheman, Biomass Bioenergy 28, 601–605 (2005).

    Article  CAS  Google Scholar 

  19. G. M. Gübitz, M. Mittelbach, and M. Trabi, Bioresource Technol. 67, 73–82 (1999).

    Article  Google Scholar 

  20. P. N. Giannelos, F. Zannikos, S. Stournas, E. Lois, and G. Anastopoulos, Industr. Crops Products 16, 1–9 (2002).

    Article  CAS  Google Scholar 

  21. S. K. Karmee and A. Chadha, Bioresource Technol. 96, 1425–1429 (2005).

    Article  CAS  Google Scholar 

  22. A. W. Schwab, G. J. Dykstra, E. Selke, S. C. Sorenson, and E. H. Pryde, J. Amer. Oil Chemist Soc. 65, 1781–1786 (1988).

    Article  CAS  Google Scholar 

  23. E. Vonghia, D. G. B. Boocock, S. K. Konar, and A. Leung, Energy Fuels 9, 1090–1096 (1995).

    Article  CAS  Google Scholar 

  24. US Patent No. 5,233,109.

  25. GB Patent No. 1,524,781.

  26. F. A. Twaiq, N. A. M. Zabidi, and S. Bhatia, Indust. Eng. Chem. Res. 38, 3230–3237 (1999).

    Article  CAS  Google Scholar 

  27. R. O. Idem, S. P. R. Katikanieni, and N. N. Bakhshi, Process. Technol. 51, 101–125 (1997).

    Article  CAS  Google Scholar 

  28. US Patent No. 4,992,605.

  29. EP Patent No. 1,489,157.

  30. D. G. Lima, V. C. V. Soares, E. B. Ribeiro, D. A. Caravalho, E. C. V. Cardoso, F. C. Rassi, K. C. Mundim, J. C. Rubin, and P. A. Z. Suarez, J. Anal. Appl. Pyrolys 71, 987–996 (2004).

    Article  CAS  Google Scholar 

  31. M. Stumberg, D. Soveran, W. Craig, W. Robinson, and K. Ha, Energy Biomass Wastes 16, 721–738 (1993).

    Google Scholar 

  32. G. Knothe, R. O. Dunn, and M. O. Bagby, Fuels and Chemicals from Biomass (Washington, DC, 1997).

  33. J. V. Gerpen, Fuel Process. Technol. 86, 1097–1107 (2005).

    Article  Google Scholar 

  34. B. K. Barwal and M. P. Sharma, Renewable Sustainable Energy Rev. 9, 363–378 (2005).

    Article  Google Scholar 

  35. A. Demirbas, Progress Energy Combust. Sci. 31, 466–487 (2005).

    Article  CAS  Google Scholar 

  36. A. Demirbas, Energy Convers. Management 44, 2093–2109 (2003).

    Article  CAS  Google Scholar 

  37. S. Saka and D. Kusdiana, Fuel 80, 225–231 (2001).

    Article  CAS  Google Scholar 

  38. G. J. Suppes, M. A. Dasari, E. J. Doskocil, P. J. Mankidy, and M. J. Goff, Appl. Catalysis A: General 257, 213–223 (2004).

    Article  CAS  Google Scholar 

  39. W. Xie, H. Peng, and L. Chen, Applied Catalysis A: General 300, 67–74 (2006).

    Article  CAS  Google Scholar 

  40. http://en.Wikipedia.org/wiki/NExBTL (1.06.2008).

  41. S. H. Bertram, Chemische Weekblad (1936), pp. 457–459.

  42. T. A. Foglia and P. A. Barr, J. Amer. Oil Chemists’ Soc. 53, 737–741 (1976).

    Article  CAS  Google Scholar 

  43. US Patent No. 4,554,397.

  44. W. F. Maier, W. Roth, and I. Thies, V. Rague, and P. Schleyer, Chem. Berichte 115, 808–812 (1982).

    Article  CAS  Google Scholar 

  45. V. N. Parmon, Catal. Today 35, 153–162 (1998).

    Article  Google Scholar 

  46. I. Kubickova, M. Snåre, P. Mäi-Arvela, K. Eränen, and D. Yu. Murzin Catal. Today 106, 197–200 (2005).

    Article  CAS  Google Scholar 

  47. M. Snåre, I. Kubickova, P. Mäki-Arvela, K. Eränen, and D. Yu. Murzin, Indust. Eng. Chem. Res. 45, 5708–5715 (2006).

    Article  Google Scholar 

  48. M. Snåre, I. Kubickiva, P. Mäki-Arvela, K. Eränen, J. Wärnă, and D. Yu. Murzin, Chem. Eng. J. 134, 29–34 (2007).

    Article  Google Scholar 

  49. P. Mäki-Arvela, I. Kubickova, K. Eräken, M. Snåre, and D. Yu. Murzin, Energy Fuels 21, 30–41 (2007).

    Article  Google Scholar 

  50. M. Snåre, I. Kubickova, P. Mäki-Arvela, D. Chichova, K. Eränen, and D. Yu. Murzin, Fuel 87, 933–945 (2008).

    Article  Google Scholar 

  51. S. Lestari, I. Simakova, A. Tokarev, P. Mäki_Arvela, K. Eränen, and D. Yu. Murzin, Catal. Lett. 122, 247–251 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Murzin.

Additional information

Published in Russian in Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 2009, Vol. 4, No. 1, pp. 3–17.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snåre, M., Mäki-Arvela, P., Simakova, I.L. et al. Overview of catalytic methods for production of next generation biodiesel from natural oils and fats. Russ. J. Phys. Chem. B 3, 1035–1043 (2009). https://doi.org/10.1134/S1990793109070021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793109070021

Key words

Navigation