Skip to main content
Log in

Supercritical fluid fabrication of components for a sustained-release injectable risperidone dose form

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The process of supercritical fluid encapsulation of pharmaceutical grade risperidone into bioresorbable D,L-polylactide microparticles via the PGSS (Particles from Gas-Saturated Solutions) method was examined. Micronization and changes in the morphology of risperidone crystals during its encapsulation into a polymer plasticized with supercritical carbon dioxide were experimentally observed. This result made it possible to prepare the polymer structures of various dispersities (from 10 to 100 μm) and morphologies containing up to 40 wt % of risperidone without the use of organic solvents. The kinetics of release of risperidone from polymer microparticles in saline solution was studied by UV spectrophotometry. It was shown that the use of D,L-polylactides of various molecular weights makes it possible to achieve a controlled increase in the time of release of risperidone from bioresorbable polymer particles prepared via the PGSS technique up to ten days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Howdle, M. S. Watson, M. J. Whitaker, V. K. Popov, M. C. Davies, F. S. Mandel, J. D. Wang, and K. M. Shakesheff, Chem. Commun., No. 1, 109 (2001).

    Article  Google Scholar 

  2. N. Blagden, M. de Matas, P. T. Gavan, and P. York, Adv. Drug Deliv. Rev., No. 59, 617 (2007).

    Article  CAS  Google Scholar 

  3. I. Pasquali and R. Bettini, Int. J. Pharm. 364, 176 (2008).

    Article  CAS  Google Scholar 

  4. M. Charoenchaitrakool, F. Dehghani, N. R. Foster, and H. K. Chan, Ind. Eng. Chem. Res. 39, 4794 (2000).

    Article  CAS  Google Scholar 

  5. P. Kumar and C. Singh, Am. J. Pharmacol. Sci. 1 (4), 67 (2013).

    CAS  Google Scholar 

  6. V. N. Bagratashvili, A. M. Egorov, L. I. Krotova, A.V. Mironov, V. Ya. Panchenko, O. O. Parenago, V. K. Popov, I. A. Revelsky, P. S. Timashev, and S. I. Tsypina, Russ. J. Phys. Chem. B 6, 804 (2012).

    Article  CAS  Google Scholar 

  7. H. Tai, V. K. Popov, K. M. Shakesheff, and S. M. Howdle, Biochem. Soc. Trans. 35, 516 (2007).

    Article  CAS  Google Scholar 

  8. S. E. Bogorodskii, L. I. Krotova, S. A. Minaeva, G.V. Mishakov, V. K. Popov, Yu. B. Basok, and V. I. Sevast’yanov, Perspekt. Mater., No. 1, 23 (2013).

    Google Scholar 

  9. S. E. Bogorodskii, L. I. Krotova, S. V. Kursakov, S. A. Minaeva, V. K. Popov, and V. I. Sevast’yanov, Russ. J. Phys. Chem. B 9, 1011 (2015).

    Article  Google Scholar 

  10. E. S. Kolotova, S. G. Egorova, A. A. Ramonova, S. E. Bogorodskii, V. K. Popov, I. I. Agapov, and M. P. Kirpichnikov, Acta Natur. 4, 105 (2012).

    Google Scholar 

  11. S. G. Kazarian, Polym. Sci., Ser. C 42, 78 (2000).

    Google Scholar 

  12. I. Pasquali, J.-M. Andanson, S. G. Kazarian, and R. J. Bettini, Supercrit. Fluids 45, 384 (2008).

    Article  CAS  Google Scholar 

  13. I. Pasquali, L. Comi, F. Pucciarelli, and R. Bettini, Int. J. Pharm. 356, 76 (2008).

    Article  CAS  Google Scholar 

  14. P. Mohr and J. Volavka, J. Psychiatry Neurol. Sci. 25, 285 (2012).

    Google Scholar 

  15. R. Gomeni, C. Heidbreder, P. J. Fudala, and A. F. J. Nasser, Clin. Pharmacol. 53, 1010 (2013).

    Article  CAS  Google Scholar 

  16. S. Grant and A. Fitton, Drugs 48, 253 (1994).

    Article  CAS  Google Scholar 

  17. R. Tandon and M. D. Jibson, Psychoneuroendocrinology 28, 9 (2003).

    Article  CAS  Google Scholar 

  18. E. N. Antonov, S. E. Bogorodskii, B. M. Feldman, E. A. Markvicheva, L. D. Rumsh, and V. K. Popov, Sverkhkrit. Fluidy Teor. Prakt. 3 (1), 34 (2008).

    Google Scholar 

  19. I. A. Revelsky, E. N. Kapinus, M. V. Fedoseeva, G. N. Gildeeva, V. V. Kosenko, and A. I. Revelsky, J. Anal. Chem. 64, 926 (2009).

    Article  Google Scholar 

  20. I. A. Revelsky, E. S. Chernetsova, B. P. Luzyanin, M. V. Fedoseeva, I. N. Glazkov, and A. I. Revelsky, Drug Test. Anal. 2, 452 (2010).

    Article  CAS  Google Scholar 

  21. V. E. Gul’ and V. N. Kuleznev, Structure and Mechanical Properties of Polymers (Labirint, Moscow, 1994) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Popov.

Additional information

Original Russian Text © V.N. Bagratashvili, S.E. Bogorodskii, A.M. Egorov, L.I. Krotova, V.K. Popov, V.I. Sevast’yanov, 2015, published in Sverkhkriticheskie Flyuidy. Teoriya i Praktika, 2015, Vol. 10, No. 3, pp. 26–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagratashvili, V.N., Bogorodskii, S.E., Egorov, A.M. et al. Supercritical fluid fabrication of components for a sustained-release injectable risperidone dose form. Russ. J. Phys. Chem. B 10, 1123–1130 (2016). https://doi.org/10.1134/S1990793116070022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116070022

Keywords

Navigation