Skip to main content
Log in

Development of Components of Prolonged Action Antibacterial Dosage Forms Using SCF Technologies

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Gentamicin and levofloxacin are encapsulated into bioresorbable polymer scaffolds and microparticles by the SCF methods: particles from gas saturated solutions (PGSS) and plasticization, with the subsequent foaming of amorphous polymers using supercritical carbon dioxide. The kinetics of the release of the incorporated drug substances into model physiological media are studied. It is shown that the use of the developed methods of SCF-encapsulation of drugs in bioresorbable carriers allows varying the size, shape, and morphology of the formed structures and, accordingly, the rate of release of the drugs into the physiological environments. In our opinion, this approach can be very promising for the development of components of new highly effective antibacterial prolonged action dosage forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. I. D. Morris and A. M. Palmer, Drug News Persp. 18, 525 (2005).

    Google Scholar 

  2. Q. Ul-Ain, S. Sharma, and G. K. Khuller, Antimicrob. Agents Chemother. 47, 3005 (2003).

    Article  CAS  Google Scholar 

  3. R. Pandey, A. Sharma, A. Zahoor, S. Sharma, G. K. Khuller, and B. Prasad, J. Antimicrob. Chemother. 52, 981 (2003).

    Article  CAS  Google Scholar 

  4. R. S. Langer and N. A. Peppas, Biomaterials 2, 201 (1981).

    Article  CAS  Google Scholar 

  5. S. Fredenberg, M. Wahlgren, M. Reslow, and A. Axelsson, Int. J. Pharm. 415, 34 (2011).

    Article  CAS  Google Scholar 

  6. X. Li and B. R. Jasti, Design of Controlled Release Drug Delivery Systems (McGraw-Hill, New York, 2006).

    Google Scholar 

  7. K. Park, J. Control. Release 190, 3 (2014).

    Article  CAS  Google Scholar 

  8. Y. Wang, W. Qu, and S. H. Choi, Am. Pharm. Rev. (2016).

  9. E. J. Fraza and E. F. Schmitt, J. Biomed. Mater. Res. 1, 43 (1971).

    Article  Google Scholar 

  10. H. Makadia and S. Siegel, Polymers 3, 1377 (2011).

    Article  CAS  Google Scholar 

  11. J. M. Anderson and M. S. Shive, Adv. Drug Deliv. Rev. 64, 72 (2012).

    Article  Google Scholar 

  12. A. M. Reed and D. K. Gilding, Polymer 22, 494 (1981).

    Article  CAS  Google Scholar 

  13. F. Danhier, E. Ansorena, J. M. Silva, R. Coco, A. le Breton, and V. Prat, J. Control. Release 161, 505 (2012).

    Article  CAS  Google Scholar 

  14. J. Szlek, A. Paclawsk, R. Lau, R. Jachowicz, and A. Mendyk, Int. J. Nanomed. 8, 4601 (2013).

    Google Scholar 

  15. F. Y. Han, K. J. Thurecht, A. K. Whittaker, and M. T. Smith, Front. Pharmacol. 7, 185 (2016).

    Article  Google Scholar 

  16. N. Teekamp, L. F. Duque, H. W. Frijlink, W. L. Hinrichs, and P. Olinga, Expert Opinion Drug Deliv. 12, 1311 (2015).

    Article  CAS  Google Scholar 

  17. G. Gasparini, R. G. Holdich, and S. R. Kosvintsev, Colloids Surf., B 75, 557 (2010).

    Article  CAS  Google Scholar 

  18. F. Ito, H. Fujimori, H. Kawakami, K. Kanamura, and K. Makino, Colloids Surf., A 384, 368 (2011).

    Article  CAS  Google Scholar 

  19. S. Feng, F. Lu, Y. Wang, and J. Suo, J. Appl. Polym. Sci. 132, 41943 (2015).

    Google Scholar 

  20. D. I. D. Cho and H. J. Yoo, J. Microelectromech. Syst. 24, 10 (2015).

    Article  CAS  Google Scholar 

  21. S. P. Schwendeman, R. B. Shah, B. A. Bailey, and A. S. Schwendeman, J. Control. Release 190, 240 (2014).

    Article  CAS  Google Scholar 

  22. C. Cai, S. Mao, O. Germershaus, A. Schaper, E. Rytting, and D. Chen, J. Microencapsul 26, 334 (2009).

    Article  CAS  Google Scholar 

  23. A. Frank, S. K. Rath, F. Boey, and S. Venkatraman, Biomaterials 25, 813 (2004).

    Article  CAS  Google Scholar 

  24. S. Mao, J. Xu, C. Cai, O. Germershaus, A. Schaper, and T. Kissel, Int. J. Pharm. 334, 137 (2007).

    Article  CAS  Google Scholar 

  25. X. Huang and C. S. Brazel, J. Control. Release 73, 121 (2001).

    Article  CAS  Google Scholar 

  26. C. R. de Azevedo, M. von Stosch, M. S. Costa, et al., Int. J. Pharm. 532, 229 (2017).

    Article  Google Scholar 

  27. F. Esmaeili, M. Hosseini-Nasr, et al., Nanomedicine 3, 161 (2007).

    Article  CAS  Google Scholar 

  28. D. Fang, M. Singkh, D. Kheigan, and M. Khora, RF Inventor’s Certificate No. 2257198 C2 (2004).

    Google Scholar 

  29. P. Marizza, L. Pontoni, T. Rindzevicius, et al., J. Supercrit. Fluids 107, 145 (2016).

    Article  CAS  Google Scholar 

  30. B. S. Sekhon, J. Pharm. Tech. Res. 2, 810 (2010).

    CAS  Google Scholar 

  31. S. P. Cape, J. A. Villa, E. T. S. Huang, T. H. Yang, J. F. Carpenter, and R. E. Sievers, Pharm. Res. 25, 1967 (2008).

    Article  CAS  Google Scholar 

  32. I. Pasquali, R. Bettini, and F. Giordano, Adv. Drug Deliv. Rev. 60, 399 (2008).

    Article  CAS  Google Scholar 

  33. I. Pasquali and R. Bettini, Int. J. Pharm. 364, 176 (2008).

    Article  CAS  Google Scholar 

  34. S. G. Kazarian, Polym. Sci., Ser. C 42, 78 (2000).

    Google Scholar 

  35. S. M. Howdle, M. S. Watson, M. J. Whitaker, V. K. Popov, et al., Chem. Commun., 109 (2001).

  36. H. Tai, V. K. Popov, K. M. Shakesheff, and S. M. Howdle, Biochem. Soc. Trans. 35, 516 (2007).

    Article  CAS  Google Scholar 

  37. S. E. Bogorodskii, L. I. Krotova, A. V. Mironov, and V. K. Popov, Russ.J. Phys. Chem. B 7, 916 (2013).

    Article  CAS  Google Scholar 

  38. S. E. Bogorodski, L. I. Krotova, S. V. Kursakov, S. A. Minaeva, V. K. Popov, and V. I. Sevast’yanov, Russ.J. Phys. Chem. B 9, 1011 (2015).

    Article  CAS  Google Scholar 

  39. E. V. Kudryashova, I. M. Deygen, K. V. Sukhoverkov, L. Yu. Filatova, N. L. Klyachko, A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, O. O. Parenago, E. N. Antonov, A. G. Dunaev, L. I. Krotova, V. K. Popov, and A. M. Egorov, Russ.J. Phys. Chem. B 9, 1201 (2016).

    Article  Google Scholar 

  40. E. N. Antonov and V. K. Popov, Russ. J. Phys. Chem. B 8, 980 (2014).

    Article  CAS  Google Scholar 

  41. V. N. Bagratashvili, S. E. Bogorodskii, A. M. Egorov, L. I. Krotova, V. K. Popov, and V. I. Sevast’yanov, Russ. J. Phys. Chem. B 10, 1123 (2016).

    Article  CAS  Google Scholar 

  42. USP 38-NF31/1092/ The Dissolution Procedure: Development and Validation, 1090-1097 (Rockville, MD, 2015).

  43. M. K. Sedova, Cand. Sci. (Pharm. Sci.) Dissertation (Zakusov Inst. Pharmacology, Moscow, 2015).

  44. F. M. Gumerov, Sub- and Supercritical Fluids in Polymer Processing (Fen, Kazan, 2000) [in Russian].

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation as part of a state order for FSRC “Crystallography and Photonics” of the Russian Academy of Sciences with respect to the development of SCF techniques for the formation of bioactive scaffold structures and by the Russian Foundation for Basic Research (no. 18-29-06062 mk) with respect to the development of pharmaceutical dosage forms of prolonged action.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Antonov.

Additional information

Translated by E. V. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, E.N., Bogorodsky, S.E., Dunaev, A.G. et al. Development of Components of Prolonged Action Antibacterial Dosage Forms Using SCF Technologies. Russ. J. Phys. Chem. B 14, 1108–1115 (2020). https://doi.org/10.1134/S1990793120070027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120070027

Navigation