Skip to main content
Log in

Antimicrobial effect of copper nanoparticles with differing dispersion and phase composition

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Data on the antimicrobial effect of copper nanoparticles with different sizes, phase compositions, and surface oxide film thicknesses are represented. The nanoparticles under study show an antibacterial effect against the cells of the test species, Gram positive (Staphylococcus albus) and Gram negative (Escherihia coli) strains. The differences in toxicity observed for nanoparticles with varying dispersions and phase compositions are related to both specific features of the microorganism strains and nanoparticle concentration and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Wright, K. Lam, A. G. Buret, et al., “Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing,” Wound Repair Regen. 10(3), 141–151 (2002).

    Article  Google Scholar 

  2. A. A. Rakhmetova, T. P. Alekseeva, O. A. Bogoslovskaya, et al., “Wound-healing properties of copper nanoparticles as a function of physicochemical parameters,” Nanotech. Russ. 5(3–4), 271 (2010).

    Article  Google Scholar 

  3. O. A. Bogoslovskaya, A. A. Rakhmetova, N. N. Glushchenko, M. N. Ovsyannikova, I. P. Ol’khovskaya, V. P. Varlamov, A. N. Levov, A. V. Il’ina, and A. A. Zubareva, RF Patent No. 2460532, 2012.

  4. N. N. Glushchenko, O. A. Bogoslovskaya, and I. P. Ol’khovskaya, “Physicochemical regularities of biological activity of high-dispersed metal powders,” Khim. Fiz. 21(4), 79–85 (2002).

    Google Scholar 

  5. O. A. Bogoslovskaya, A. A. Rakhmetova, I. P. Ol’khovskaya, I. O. Leipunskii, and N. N. Glushchenko, “The way to estimate component safety of heavy particles from smokes caused by acombined heat and power plants: copper nanoparticles with modified surface,” Izv. Akad. Nauk. Energet., No. 3, 97–104 (2012).

    Google Scholar 

  6. S. Pal, K. Yu, and J. M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of nanoparticle? A study of the gram-negative bacterium E. coli,” Appl. Envir. Microbiol. 73(6), 1712–1720 (2007).

    Article  Google Scholar 

  7. P. L. Taylor, O. Omotoso, J. B. Wiskel, et al., “Impact of heat on nanocrystalline silver dressings. Part II: physical properties,” Biomaterials 26(35), 7230–7240 (2005).

    Article  Google Scholar 

  8. M. Ya. Gen and A. V. Miller, USSR Inventor’s Certificate No. 814432, Byull. Izobret., No. 11 (1981).

    Google Scholar 

  9. A. N. Zhigach, I. O. Leipunskii, M. L. Kuskov, et al., “Facility for producing metallic nanoparticles and for investigating their physicochemical properties,” Prib. Tekh. Eksp., No. 6, 122–129 (2000).

    Google Scholar 

  10. The Way to Determine Microorganisms Sensibility to Antimicrobials. Methodological Recommendations (Federal. tsentr Gossanepidnadzora Minzdrava Rossii, 2004).

  11. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, and A. A. Rahuman, “Synthesis and antimicrobial activity of copper nanoparticles,” Mater. Lett. 71, 114–116 (2012).

    Article  Google Scholar 

  12. K. Y. Yoon, J. H. Byeon, J. H. Park, and J. Hwang, “Susceptibility constants of Escherichia coli and bacillus subtilis to silver and copper nanoparticles,” Sci. Total Environ. 373, 572–575 (2007).

    Article  Google Scholar 

  13. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, and A. Memic, “Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains,” Int. J. Nanomed. 7, 3527–3535 (2012).

    Article  Google Scholar 

  14. H. Sakhawat, K. F. Ummul, A. M. Yousuf, R. Muhibur, et al., “Microemulsions as nanoreactor for preparation of nanoparticles with antibacterial activity,” J. Bangladesh Chem. Soc. 25(1), 71–79 (2012).

    Google Scholar 

  15. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji, “Strain specificity in antimicrobial activity of silver and copper nanoparticles,” Acta Biomater. 4, 707–716 (2008).

    Article  Google Scholar 

  16. S. Jadhav, S. Gaikwad, M. Nimse, and A. Rajbhoj, “Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity,” J Clust. Sci. 22, 121–129 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Bogoslovskaja, A.A. Rakhmetova, M.N. Ovsyannikova, I.P. Olkhovskaya, N.N. Gluschenko, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogoslovskaja, O.A., Rakhmetova, A.A., Ovsyannikova, M.N. et al. Antimicrobial effect of copper nanoparticles with differing dispersion and phase composition. Nanotechnol Russia 9, 82–86 (2014). https://doi.org/10.1134/S1995078014010042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014010042

Keywords

Navigation