Skip to main content
Log in

Concomitant action of organic and inorganic nanoparticles in wound healing and antibacterial resistance: Chitosan and copper nanoparticles in an ointment as an example

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The wound-healing properties of organic and inorganic nanoparticles, i.e., chitosan and copper nanoparticles, cointroduced into an ointment preparation, were investigated. When used individually in the ointment, copper oxide nanoparticles at a concentration of 0.002% and a level of oxidation of up to 90% and nanoparticles of chitosan at a concentration of 0.002% prepared from chitosan with a molecular weight of 10 kDa demonstrated the most profound wound-healing effect. The simultaneous introduction of chitosan and copper nanoparticles into the ointment composition led to a synergistic effect. The most pronounced wound healing was observed for complex ointment preparations containing Cu1Ox sample 2 copper nanoparticles at a concentration of 0.002% and chitosan nanoparticles synthesized from low-molecularweight chitosan (Mw 10 kDa) with a degree of deacetylation (DD) of 89% at a concentration of 0.002%. An additive effect was observed for the complex ointment in comparison with ointment preparations based on individual components. Similar antibacterial effects were observed in ointment preparations based on organic and inorganic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. R. Naser, A. S. Kolbin, and S. A. Shlyapnikov, “Rational use principles of antimicrobial means in hospitals,” Infekts. Khirurg., No. 3, 6–10 (2013).

    Google Scholar 

  2. L. A. Blatun, “Local medical treatment for wounds,” Khirurg. Zh. im. N. I. Pirogova, No. 4, 51–59 (2011).

    Google Scholar 

  3. J. S. Boateng, K. H. Matthews, H. N. Stevens, et al., “Wound healing dressings and drug delivery systems: a review,” J. Pharm. Sci. 97(8), 2892–2923 (2008).

    Article  Google Scholar 

  4. J. B. Wright, K. Lam, A. G. Buret, et al., “Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing,” Wound Repair Regen. 10(3), 141–151 (2002).

    Article  Google Scholar 

  5. C. Rigo, L. Ferroni, I. Tocco, et al., “Active silver nanoparticles for wound healing,” Int. J. Mol. Sci. 14(3), 4817–4840 (2013).

    Article  Google Scholar 

  6. K. Kawai, B. J. Larson, H. Ishise, et al., “Calcium-based nanoparticles accelerate skin wound healing,” PLoS ONE 6(11), 1–13 (2011).

    Article  Google Scholar 

  7. O. Ziv-Polat, M. Topaz, T. Brosh, and S. Margel, “Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles,” Biomaterials 31, 741–747 (2010).

    Article  Google Scholar 

  8. J. G. Leu, S. A. Chen, H. M. Chen, et al., “The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid,” Nanomedicine 8(5), 767–775 (2012).

    Article  Google Scholar 

  9. O. A. Bogoslovskaya, A. A. Rakhmetova, N. N. Glushchenko, et al., RF Patent 2460532, Byull. Izobret., No. 25 (2012).

    Google Scholar 

  10. N. N. Glushchenko, O. A. Bogoslovskaya, A. A. Rakhmetova, et al., RF Patent 2446810, Byull. Izobret., No. 10 (2012).

    Google Scholar 

  11. A. B. Lansdown, B. Sampson, and A. Rowe, “Sequential changes in trace metal, metallothionein and calmodulin concentrations in healing skin wounds,” J. Anat. 195(3), 375–386 (1999).

    Article  Google Scholar 

  12. J. Berger, M. Reist, J. M. Mayer, O. Felt, and R. Gurny, “Structure and interaction in chitosan hydrogels formed by complexation or aggregation for biomedical applications,” Eur. J. Pharm. Biopharm. 57, 35–52 (2004).

    Article  Google Scholar 

  13. I. A. Sogias, A. C. Williams, and V. V. Khutoryansky, “Why is chitosan mucoadhesive,” Biomacromolecules 9, 1837–1842 (2008).

    Article  Google Scholar 

  14. S.-H. Lim and S. M. Hudson, “Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals,” J. Macromolec. Sci. C 43, 223–269 (2003).

    Article  Google Scholar 

  15. S. Chakraborty, P. Pramanik, and S. Roy, “A review on emergence of antibiotic resistant Staphylococcus aureus and role of chitosan nanoparticle in drug delivery,” Int. J. Life Sci. Pharma Res. 2(1), 96–115 (2012).

    Google Scholar 

  16. J. J. Wang, Z. W. Zeng, R. Z. Xiao, et al., “Recent advances of chitosan nanoparticles as drug carriers,” Int. J. Nanomed. 6, 765–774 (2011).

    Google Scholar 

  17. S. Mangal, D. Pawar, N. K. Garg, et al., “Pharmaceutical and immunological evaluation of mucoadhesive nanoparticles based delivery system(s) administered intranasally,” Vaccine 29, 4953–4962 (2011).

    Article  Google Scholar 

  18. Y. Li, M. Hu, B. Qi, et al., “Preparation and characterization of biocompatible quaternized chitosan nanoparticles encapsulating CdS quantum dots,” J. Biotechnol. Biomater. 1(4), 1–6 (2011).

    Google Scholar 

  19. S. Rodrigues, M. Dionísio, C. R. López, et al., “Biocompatibility of chitosan carriers with application in drug delivery,” J. Funct. Biomater. 3, 615–641 (2012).

    Article  Google Scholar 

  20. M. D. Leonida, S. Banjade, T. Vo, et al., “Nanocomposite materials with antimicrobial activity based on chitosan,” Int. J. Nano Biomater. 3(4), 316–334 (2011).

    Article  Google Scholar 

  21. A. V. Il’ina, V. P. Varlamov, Yu. A. Ermakov, and K. G. Skryabin, “Chitosan is a natural polymer for forming nanoparticles,” Dokl. Akad. Nauk 421(2), 199–201 (2008).

    Google Scholar 

  22. O. A. Bogoslovskaya, A. A. Rakhmetova, M. N. Ovsyannikova, I. P. Ol’khovskaya, and N. N. Glushchenko, “Antimicrobial effect of copper nanoparticles with differing dispersion and phase composition,” Nanotech. Russ. 9(1–2), 82 (2014).

    Article  Google Scholar 

  23. A. A. Rakhmetova, T. P. Alekseeva, O. A. Bogoslovskaya, I. O. Leipunskii, I. P. Ol’khovskaya, A. N. Zhigch, and N. N. Glushchenko, “Wound-healing properties of copper nanoparticles as a function of physicochemical parameters,” Nanotechnol. Russ. 5(3–4), 271–276 (2010).

    Article  Google Scholar 

  24. T. P. Alekseeva, A. A. Rakhmetova, O. A. Bogoslovskaya, I. P. Ol’khovskaya, A. N. Levov, A. V. Il’ina, V. P. Varlamov, T. A. Baitukalov, and N. N. Glushchenko, “Wound-healing properties of chitosan and its N-sulfosuccinoil derivants,” Izv. Russ. Akad. Nauk. Ser. Biol., No. 3, 1–7 (2010).

    Google Scholar 

  25. Ying-Chien Chung and Che-Lang Kuon, “Preparation and important functional properties of water-soluble chitosan produced Maillard reaction,” Bior. Technol. 96, 1473–1482 (2005).

    Article  Google Scholar 

  26. Lifeng Qi and Zirong Xu, “Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles,” Bioorganic 15, 1397–1399 (2005).

    Article  Google Scholar 

  27. M. Ya. Gen and A. V. Miller, USSR Inventor’s Certificate No. 814432, Byull. Izobret., No. 11, 25 (1981).

    Google Scholar 

  28. A. N. Zhigach, I. O. Leipunskii, M. L. Kuskov, et al., “Facility for producing metals nanoparticles and researching their physicochemical properties,” Prib. Tekh. Eksp., No. 6, 122–129 (2000).

    Google Scholar 

  29. A. V. Il’ina, D. V. Kurek, A. N. Levov, and V. P. Varlamov, “Lactoferrin sorption at chitosan-contained nanoparticles,” Nanomater. Nanotekhnol., No. 1, 29–39 (2012).

    Google Scholar 

  30. The Way to Determine Microorganisms Antibacterial Drugs Sensitivity. Methodological Recommendations (Federal Center for Hygiene and Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, 2004) [in Russian].

  31. K. A. Janes, P. Calvo, and M. J. Alonso, “Polysaccaride colloidal particles as delivery systems for macromolecules,” Adv. Drug. Deliv. Rev. 47(1), 83–97 (2001).

    Article  Google Scholar 

  32. A. B. Shekher, V. A. Serezhenkov, T. G. Rudenko, A. V. Pekshev, and A. F. Vanin, Nitric Oxide 12(4), 210–219 (2005).

    Article  Google Scholar 

  33. L. A. Volodina, L. M. Baider, A. A. Rakhmetova, O. A. Bogoslovskaya, I. P. Ol’khovskaya, and N. N. Glushchenko, “Copper caused signal variation of electron paramagnetic resonance from nitrolysed hemoglobin complexes in wound under copper nanoparticles effect,” Biofizika 58(5), 507–515 (2013).

    Google Scholar 

  34. L. Pickart, J. M. Vasquez-Soltero, and A. Margolina, “The human tripeptide GHK-Cu in prevention of oxidative stress and degenerative conditions of aging: implications for cognitive health,” Oxid. Med. Cellular Longevity 2012, 1–8 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Varlamov.

Additional information

Original Russian Text © A.A. Rakhmetova, O.A. Bogoslovskaya, I.P. Olkhovskaya, A.N. Zhigach, A.V. Ilyina, V.P. Varlamov, N.N. Gluschenko, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhmetova, A.A., Bogoslovskaya, O.A., Olkhovskaya, I.P. et al. Concomitant action of organic and inorganic nanoparticles in wound healing and antibacterial resistance: Chitosan and copper nanoparticles in an ointment as an example. Nanotechnol Russia 10, 149–157 (2015). https://doi.org/10.1134/S1995078015010164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015010164

Keywords

Navigation