Skip to main content
Log in

Synthesis, Characterisation, and Antimicrobial Efficacy of Acid Fuchsin Schiff Base-Modified Silver Nanoparticles

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In the current work, silver nanoparticles (AgNPs) were green synthesized using starch and modified with anionic dye (acid fuchsin) and aldehyde (salicylaldehyde and cinnamaldehyde). Thus in situ formation of Schiff base stabilized AgNPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The size and the stability of the Schiff base modified AgNPs were explored using DLS and Zeta potential analysis. TEM analyses showed the size of the Schiff base (cinnamaldehyde) modified AgNPs with an average particle size of 5–10 nm. The synthesized Schiff base modified AgNPs were tested for their antibacterial efficacy against gram-negative bacteria such as Escherichia coli (MTCC733), Pseudomonas aeruginosa (MTCC1688) and gram-positive bacteria such as Bacillus subtilis (MTCC41) and Enterococcus faecalis (MTCC96). The antifungal activity of the synthesized materials has been studied against Candida albicans along with standard fluconazole. Higher antibacterial and antifungal activities were observed for the Schiff base (SB) capped AgNPs due to the combined effect of SB and AgNPs. The mechanism of the bactericidal activity of nanoparticles is suggested as due to the interaction of AgNPs with the cell membrane. The results of the present study confirm that SB stabilized AgNPs have significant potential as an antimicrobial agent in treating infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. Ahmad, P. Mukherjee, S. Senapati, et al., Colloids Surf., B 28, 313 (2003).

    Article  CAS  Google Scholar 

  2. S. Iravani, H. Korbekandi, S. V. Mirmohammadi, and B. Zolfaghari, Res. Pharm. Sci. 9, 385 (2014).

    CAS  Google Scholar 

  3. S. A. Jones, P. G. Bowler, M. Walker, and D. Parsons, Wound Rep. Regen. 12, 288 (2004).

    Article  Google Scholar 

  4. S. Mirsadeghi, M. F. Koudehi, H. R. Rajabi, and S. M. Pourmortazavi, Curr. Pharm. Biotechnol. 10, 2174 (2019)

    Google Scholar 

  5. H. Jang, Y. K. Kim, H. Huh, and D. H. Min, ACS Nano 8, 467 (2014).

    Article  CAS  Google Scholar 

  6. Gao Xianghua, Liqiao Wei, Jing Wang, and Bingshe Xu, Adv. Mater. Res. 236, 1945 (2011).

    Article  Google Scholar 

  7. S. Honary, K. Ghajar, P. Khazaeli, and P. Shalchia, Trop. J. Pharm. Res. 10, 69 (2011).

    Article  CAS  Google Scholar 

  8. N. Vigneshwaran, R. P. Achane, R. H. Balasubramanya, and P. V. Varadarajan, Carbohydr. Res. 341, 2012 (2006).

    Article  CAS  Google Scholar 

  9. S. Patil, S. D. Jadhav, and S. K. Shinde, Org. Chem. Int., No. 153519, 1 (2012).

  10. Suba Kannaiyan, Easwaramoorthi, and V. Andal, Int. J. Chem. Tech. Res. 8, 54 (2015).

    CAS  Google Scholar 

  11. Abiola Azeez Jimoh, Aasif Helal, M. Nasiruzzaman Shaikh, et al., J. Nanomater., No. 101694, 1 (2015).

  12. Pengcheng Huang, Jianfang Li, Xin Liu, and Fangying Wu, Microchim. Acta 183, 863 (2016).

    Article  CAS  Google Scholar 

  13. J. Balachandramohan and T. Sivasankar, J. Microencapsul. 37, 29 (2020).

    Article  CAS  Google Scholar 

  14. M. Ganguly, C. Mondal, J. Jana, et al., Langmuir 30, 4120 (2014).

    Article  CAS  Google Scholar 

  15. A. Abbasi, H. Khojasteh, M. Hamadanian, and M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 27, 4972 (2016).

    CAS  Google Scholar 

  16. Z. Shiri-Yekta, M. Reza Yaftian, and A. Nilchi, Korean J. Chem. Eng. 30, 1644 (2013).

    Article  CAS  Google Scholar 

  17. E. E. Elemikea, E. O. Dareb, I. D. Samuel, and J. Ch. Onwukab, J. Appl. Res. Technol. 14, 38 (2016).

    Article  Google Scholar 

  18. M. Shakouri-Arani and M. Salavati-Niasari, Spectrochim. Acta, A 133, 463 (2014).

    Article  CAS  Google Scholar 

  19. S. Agnihotri, S. Mukherjee,  and  S. Mukherjee, Nanoscale 5, 7328 (2013).

    Article  CAS  Google Scholar 

  20. S. A. Khan, A. A. Siddiqui, and B. Shibeer, Asian J. Chem. 14, 1117 (2002)

    CAS  Google Scholar 

  21. C. Perez, M. Pauli, and P. Bazerque, Acta Biol. Med. Exp. 15, 113–115 (1990).

    Google Scholar 

  22. R. M. Issa, A. M. Khedr, and H. F. Rizk, J. Chin. Chem. Soc. 55, 875 (2008).

    Article  CAS  Google Scholar 

  23. M. Zobir bin Hussein, A. Hj Yahaya, M. Shamsul, et al., Mater. Lett. 58, 329 (2004)

  24. M. R. Silverstein, G. C. Bassler, and T. C. Morril, Spectrometric Identification of Organic Compounds, 4th ed. (Wiley, New York, 1981), pp. 111, 130.

  25. A. K. Anandalakshmi, J. V. Venugobal, and Ramasamy, Appl. Nanosci. 6, 399 (2016).

    Article  CAS  Google Scholar 

  26. V. dal Lago, L. F. de Oliveira, K. de Almeida Goncalves, et al., J. Mater. Chem. 21, 12267 (2011).

    Article  CAS  Google Scholar 

  27. S. Pal, Y. K. Tak, and J. M. Song, Appl.  Environ. Microbiol. 73, 1712 (2007).

    Article  CAS  Google Scholar 

  28. S. Ashraf, N. Akhtar, M. Afzal Ghauri, et al., Nanoscale Res. Lett. 267, 1 (2012)

    Google Scholar 

  29. A. M. El Badawy, R. G. Silva, B. Morris, et al., Environ. Sci. Technol. 45, 283 (2011).

    Article  CAS  Google Scholar 

  30. P. K. Khanna, N. Singh, K. Deepti, et al., Mater. Lett. 61, 3366 (2007).

    Article  CAS  Google Scholar 

  31. M. Cleiton, Da Silva, D. L. Da Silva, et al., J. Adv. Res. 2, 1 (2011).

    Article  Google Scholar 

  32. Y. Xie, L. Chen, X. Zhang et al., J. Colloid Interface Sci. 510, 308 (2018).

    Article  CAS  Google Scholar 

  33. T. Dai, C. Wang, Y. Wang, et al., ACS Appl. Mater. Interfaces 10, 15163 (2018).

    Article  CAS  Google Scholar 

  34. K. J. Kim, W. S. Sung, B. K. Suh, et al., Biometals 22, 235 (2009).

    Article  CAS  Google Scholar 

  35. H. H. Lara, D. G. Romero-Urbina, Ch. Pierce, et al., J. Nanobiotechnol. 13, 91 (2015).

    Article  Google Scholar 

  36. E. M. Ali and B. M. Abdallah, Nanomaterials 10, 422 (2020).

    Article  CAS  Google Scholar 

  37. S. Paul, K. Mohanram, and I. Kannan, Pharmacol. Study 39, 182 (2018).

    Google Scholar 

  38. R. Lali Raveendran, N. Kumar Sasidharan, and S. Devaki, J. Bioconjug. Chem. 28, 1005 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to express heartfelt thanks to KCG College of Technology for providing lab facilities and for their support during their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Andal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannaiyan, S., Easwaramoorthy, Kannan, K. et al. Synthesis, Characterisation, and Antimicrobial Efficacy of Acid Fuchsin Schiff Base-Modified Silver Nanoparticles. Nanotechnol Russia 15, 828–836 (2020). https://doi.org/10.1134/S1995078020060208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060208

Navigation