Skip to main content
Log in

New Two-Level Ensemble Method and Its Application to Chemical Compounds Properties Prediction

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The paper considers a new two-level ensemble regression method and its application to prediction problems. At the first stage, the target variable prediction is performed by regression trees included in the lower level optimal ensemble. The aggregated solution is computed by a regression random forest, using the predictions computed by the ensemble trees as input features. The method differs from common ensemble method by a new technique that is used to build trees that are added to ensemble. This technique is based on minimizing a special functional that is the difference of two components. The first component characterizes the approximation of the target variable dependency on input features. The second component is aimed at increasing variance of prognoses calculated by algorithms from ensemble. The developed method implements combination of approaches used in the random forest method and gradient boosting. The paper presents the results of the developed method for predicting the melting points for halides with various compositions, as well as for predicting of the crystal lattices parameters for \(A_{2}BB^{\prime}O_{6}\) composition compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. Z. H. Zhou, Ensemble Methods: Foundations and Algorithms (Chapman and Hall/CRC, New York, 2012).

    Book  Google Scholar 

  2. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning Data Mining, Inference, and Prediction, Springer Series in Statistics (Springer, New York, 2009).

    MATH  Google Scholar 

  3. V. A. Dudarev, N. N. Kiselyova, A. V. Stolyarenko, A. A. Dokukin, O. V. Senko, V. V. Ryazanov, E. A. Vashchenko, M. A. Vitushko, and V. S. Pereverzev-Orlov, ‘‘An information system for inorganic substances physical properties prediction based on machine learning methods,’’ in Supplementary Proceedings of the 22nd International Conference on Data Analytics and Management in Data Intensive Domains DAMDID/RCDL 2020, CEUR Workshop Proc. 2790, 89–102 (2020).

    Google Scholar 

  4. J. Im, S. Lee, T. W. Ko, H. W. Kim, Y. K. Hyon, and H. Chang, ‘‘Identifying Pb-free perovskites for solar cells by machine learning,’’ npj Comput. Mater. 5, 37 (2019). https://doi.org/10.1038/s41524-019-0177-0

    Article  Google Scholar 

  5. X. Lin, C. Li, H. Hao, G. Zhao, and H. Liu, ‘‘Accelerated search for \(ABO_{3}\)-type the electronic contribution of polycrystalline dielectric constants by machine learning,’’ Comput. Mater. Sci. 193, 110404 (2021).

  6. M. Mukherjee, S. Satsangi, and A. K. Singh, ‘‘A statistical approach for rapid prediction of electron relaxation time using elemental representatives,’’ Chem. Mater. 32, 6507–6514 (2020).

    Article  Google Scholar 

  7. L. Breiman, ‘‘Random forests,’’ Machine Learn. 45, 5–32 (2001).

    Article  MATH  Google Scholar 

  8. T. K. Ho, ‘‘The random subspace method for constructing decision forests,’’ IEEE Trans. Pattern Anal. Machine Intell. 20, 832–844 (1998).

    Article  Google Scholar 

  9. N. García-Pedrajas and D. Ortiz-Boyer, ‘‘Boosting random subspace method,’’ Neural Networks 21, 1344–1362 (2008).

    Article  MATH  Google Scholar 

  10. R. E. Schapire and Y. Freund, Foundations and Algorithms (MIT Press, Cambridge, MA, 2012).

    MATH  Google Scholar 

  11. Yu. I. Zhuravlev, O. V. Senko, A. A. Dokukin, N. N. Kiselyova, and I. A. Saenko, ‘‘Two-level regression method using ensembles of trees with optimal divergence,’’ Dokl. Math. 103, 1–4 (2021). https://doi.org/10.1134/S1064562421040177

    Article  MathSciNet  MATH  Google Scholar 

  12. D. H. Wolpert, ‘‘Stacked generalization,’’ Neural Networks 5, 241–259 (1992). https://doi.org/10.1016/S0893-6080(05)80023-1

    Article  Google Scholar 

  13. E. M. Braverman and I. B. Muchnik, Structural Methods for Processing Empirical Data (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  14. N. N. Kiseleva, ‘‘Prediction of new compounds in systems of monovalent and divalent metal halides,’’ Russ. J. Inorg. Chem. 59, 496–502 (2014). https://doi.org/10.1134/S0036023614050106

    Article  Google Scholar 

  15. N. N. Kiselyova, A. V. Stolyarenko, V. V. Ryazanov, O. V. Senko, A. A. Dokukin, and V. V. Podbel’skii, ‘‘Prediction of new compounds in the \(AHal{-}BHal_{3}\) systems,’’ Russ. J. Inorg. Chem. 59, 1462–1471 (2014). https://doi.org/10.1134/S0036023614120109

    Article  Google Scholar 

  16. B. G. Korshunov, V. V. Safonov, and D. V. Drobot, Phase Equilibria in Halide Systems, The Handbook (Metallurgy, Moscow, 1979) [in Russian].

    Google Scholar 

  17. B. G. Korshunov and V. V. Safonov, Fusion Diagrams. Handbook (Metallurgy, Moscow, 1991) [in Russian].

    Google Scholar 

  18. Thermal Constants of Substances DB. http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcome.html/welcome.html. Accessed May 25, 2022.

  19. V. I. Posypaiko and E. A. Alekseeva, Phase Equilibria in Binary Halides (Springer, New York, 1987).

    Google Scholar 

  20. G. Ryu and K. Son, ‘‘Surface defect free growth of a spin dimer \(TlCuCl_{3}\) compound crystals and investigations on its optical and magnetic properties,’’ J. Solid State Chem. 237, 358–363 (2016).

    Article  Google Scholar 

  21. B. G. Korshunov and V. V. Safonov, Halide Systems, The Handbook (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  22. L. Rycerz, J. Kapala, and M. Gaune-Escard, ‘‘Phase diagram and thermodynamic properties of the \(EuBr_{2}{-}CsBr\) binary system,’’ J. Chem. Eng. Data 66, 1939–1946 (2021).

    Article  Google Scholar 

  23. N. N. Kiselyova, V. A. Dudarev, A. V. Stolyarenko, A. A. Dokukin, O. V. Senko, V. V. Ryazanov, V. V. Vitushko, V. S. Pereverzev-Orlov, and E. A. Vaschenko, ‘‘Prediction of space groups for perovskite-like \(A^{II}_{2}B^{III}B^{\prime V}O_{6}\) compounds,’’ Inorg. Mater.: Appl. Res. 13, 277–293 (2022). https://doi.org/10.1134/S2075113

    Article  Google Scholar 

Download references

Funding

The study was carried out as a part of the state assignment (project nos. 075-01176-23-00 and 0063-2016-0003) with the partial financial support of the Russian Foundation for Basic Research, project nos. 20-01-00609 and 21-51-53019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Senko, A. A. Dokukin, N. N. Kiselyova, V. A. Dudarev or Yu. O. Kuznetsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senko, O.V., Dokukin, A.A., Kiselyova, N.N. et al. New Two-Level Ensemble Method and Its Application to Chemical Compounds Properties Prediction. Lobachevskii J Math 44, 188–197 (2023). https://doi.org/10.1134/S1995080223010341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223010341

Keywords:

Navigation