Skip to main content
Log in

Thermotropic Liquid Crystalline Polyesters with Mesogenic Fragments Based on the p-Oxybenzoate Unit

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

Main trends in the development of thermotropic liquid crystalline (LC) polymers based on p‑hydroxybenzoic acid are described in this review. The relationship between the structure of the main chain of copolymers and their thermal and mechanical properties is shown. The possibility of creating biodegradable LC polymers is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. V. P. Shibaev and A. Yu. Bobrovskii, “Liquid crystalline polymers: development trends and photocontrollable materials,” Usp. Khim. 86 (11), 1024–1072 (2017).

    Article  Google Scholar 

  2. V. K. Thakur and M. R. Kessler, Liquid Crystalline Polymers (Springer International Publishing, Dordrecht, 2016), Vol. 1.

    Book  Google Scholar 

  3. V. K. Thakur and M. R. Kessler, Liquid Crystalline Polymers (Springer International Publishing, Dordrecht, 2015), Vol. 2.

    Book  Google Scholar 

  4. T. Kato, J. Uchida, T. Ichikawa, et al., “Functional liquid-crystalline polymers and supramolecular liquid crystals,” Polym. J. 50 (1), 149–166 (2018).

    Article  CAS  Google Scholar 

  5. M. O’Neill and S. M. Kelly, “Ordered materials for organic electronics and photonics,” Adv. Mater. 23 (5), 566–584 (2011).

    Article  Google Scholar 

  6. B. Mu, B. Wu, and D.-Z. Chen, “Macromolecular engineering on triphenylene based discotic side-chain liquid crystalline polymers,” Acta Polym. Sin., No. 10, 1574–1590 (2017).

  7. T. Kato, M. Yoshio, T. Ichikawa, et al., “Transport of ions and electrons in nanostructured liquid crystals,” Nat. Rev. Mater. 2 (4) (2017).

  8. S. Kim, T. Ogata, and S. Kurihara, “Azobenzene-containing polymers for photonic crystal materials,” Polym. J. 49 (5), 407–412 (2017).

    Article  CAS  Google Scholar 

  9. M. Kumar and S. Kumar, “Liquid crystals in photovoltaics: A new generation of organic photovoltaics,” Polym. J. 49 (1), 85–111 (2017).

    Article  CAS  Google Scholar 

  10. T. Yamamoto, T. Kimura, M. Komura, et al., “Block copolymer permeable membrane with visualized high-density straight channels of poly(ethylene oxide),” Adv. Funct. Mater. 21 (5), 918–926 (2011).

    Article  CAS  Google Scholar 

  11. A. Concellón, T. Liang, A. P. H. J. Schenning, et al., “Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers,” J. Mater. Chem. 6 (5), 1000–1007 (2018).

    Article  Google Scholar 

  12. R. Cervera-Procas, C. Sánchez-Somolinos, J. L. Serrano, et al., “A polymer network prepared by the thiol-yne photocrosslinking of a liquid crystalline dendrimer,” Macromol. Rapid Commun. 34 (6), 498–503 (2013).

    Article  CAS  Google Scholar 

  13. X.-J. Wang and Q.-F. Zhou, Liquid Crystalline Polymers (World Scientific, Singapore, 2004).

    Book  Google Scholar 

  14. Z. Terzopoulou, E. Karakatsianopoulou, N. Kasmi, et al., “Effect of catalyst type on molecular weight increase and coloration of poly(ethylene furanoate) biobased polyester during melt polycondensation,” Polym. Chem. 8 (44), 6895–6908 (2017).

    Article  CAS  Google Scholar 

  15. P. Wei, L. Wang, S. Huang, et al., “Synthesis and characterization of novel thermotropic aromaticaliphatic biodegradable copolyesters containing D, L-lactic acid (LA), poly(butylene terephthalate) (PBT) and biomesogenic units,” Polym.-Plast. Technol. Eng. 53 (16), 1697–1705 (2014).

    Article  CAS  Google Scholar 

  16. D. Demus, J. Goodby, G. W. Gray, et al., Handbook of Liquid Crystals (WILEY-VCH, Weinheim, 2008), pp. 52–65.

    Google Scholar 

  17. V. O. Startsev, M. V. Molokov, A. N. Blaznov, M. E. Zhurkovskii, V. T. Erofeev, and I. V. Smirnov, “Determination of the heat resistance of polymer construction materials by the dynamic mechanical method,” Polym. Sci., Ser. D 10 (4), 313–317 (2017).

    CAS  Google Scholar 

  18. V. A. Ryzhov, V. V. Zhizhenkov, and I. A. Gorshkova, “The study of the orientation state of a fully aromatic thermotropic liquid crystal copolymer,” Fiz.-Khim. Polim.: Sint. Svoistva Primen., No. 21, 3–8 (2015).

  19. Q. Guan, B. Norder, and T. J. Dingemans, “Flexible all-aromatic polyesterimide films with high glass transition temperatures,” J. Appl. Polym. Sci. 134 (18) (2017).

  20. G. Guerriero, R. Alderliesten, T. Dingemans, et al., “Thermotropic liquid crystalline polymers as protective coatings for aerospace,” Prog. Org. Coat. 70 (4), 245–251 (2011).

    Article  CAS  Google Scholar 

  21. M. Iqbal, S. J. Picken, and T. J. Dingemans, “Synthesis and properties of aligned all-aromatic liquid crystal networks,” High Perform. Polym. 26 (4), 381–391 (2014).

    Article  Google Scholar 

  22. T. Ohnishi, T. Uchida, S. Yamazaki, et al., “Preparation of poly(ester-imide) ribbons comprised of helical and non-helical blocks by copolymerization,” RSC Adv. 6 (104), 101 995–102 002 (2016).

    Article  Google Scholar 

  23. L. F. Ferreira, L. M. Souza, D. L. Franco, et al., “Formation of novel polymeric films derived from 4-hydroxybenzoic acid,” Mater. Chem. Phys. 129 (1), 46–52 (2011).

    Article  CAS  Google Scholar 

  24. K. Tsuchiya, Y. Ishida, T. Higashihara, et al., “Synthesis of poly(arylene ether sulfone): 18-Crown-6 catalyzed phase-transfer polycondensation of bisphenol A with 4,4'-dichlorodiphenyl sulfone,” Polym. J. 47 (5), 353–354 (2015).

    Article  CAS  Google Scholar 

  25. S. Y. Lee, Y. Kwon, B. H. Kim, et al., “Synthesis of high molecular weight sulfonated poly(arylene ether sulfone) copolymer without azeotropic reaction,” Solid State Ionics 275, 92–96 (2015).

    Article  CAS  Google Scholar 

  26. E. N. Kablov, L. V. Chursova, N. F. Lukina, et al., “A study of epoxide-polysulfone polymer systems for high-strength adhesives of aviation purpose,” Polym. Sci., Ser. D 10 (3), 225–229 (2017).

    CAS  Google Scholar 

  27. M. Kihara, Y. Sakakiyama, S. Yamazaki, et al., “Preparation of aromatic polyesters by direct polymerization in the presence of boronic anhydride under non-stoichiometric condition,” Polymer 66, 222–229 (2015).

    Article  CAS  Google Scholar 

  28. M. Iqbal and T. J. Dingemans, “High Tg nematic thermosets: Synthesis, characterization and thermo-mechanical properties,” Eur. Polym. J. 46 (11), 2174–2180 (2010).

    Article  CAS  Google Scholar 

  29. P. Wei, M. Cakmak, Y. Chen, et al., “The influence of bisphenol AF unit on thermal behavior of thermotropic liquid crystal copolyesters,” Thermochim. Acta 586, 45–51 (2014).

    Article  CAS  Google Scholar 

  30. P. Wei, L. Wang, X. Wang, et al., “Nonisothermal and isothermal oxidative degradation behavior of thermotropic liquid crystal polyesters containing kinked bisphenol AF and bisphenol A units,” High Perform. Polym. 26 (8), 935–945 (2014).

    Article  Google Scholar 

  31. P. Liu, T. Wu, M. Shi, et al., “Synthesis and characterization of readily soluble polyarylates derived from either 1,1-bis(4-hydroxyphenyl)-1-phenylethane or tetramethylbisphenol A and aromatic diacid chlorides,” J. Appl. Polym. Sci. 119 (4), 1923–1930 (2010).

    Article  Google Scholar 

  32. P. Liu, T. Wu, G. Ye, et al., “Novel polyarylates containing aryl ether units: Synthesis, characterization and properties,” Polym. Int. 62 (5), 751–758 (2012).

    Article  Google Scholar 

  33. A. M. Nelson, G. B. Fahs, R. B. Moore, et al., “High-performance segmented liquid crystalline copolyesters,” Macromol. Chem. Phys. 216 (16), 1754–1763 (2015).

    Article  CAS  Google Scholar 

  34. A. I. Burya, in Int. Sci.-Tech. Conf. Polymer Composites and Tribology (Gomel, June 27–30,2017) (Gomel, 2017), p. 19.

  35. Kh. M. Abdullaev, E. D. Shaimov, F. S. Tabarov, et al., “Features of the flow curves of liquid crystal copolyesters and structural-mechanical parameters of extrudates obtained in different phase states of the melt,” Dokl. Akad. Nauk Resp. Tadzh. 57 (4), 309–314 (2014).

    Google Scholar 

  36. Z. S. Khasbulatova, “Polyesters based on derivatives of n-hydroxybenzoic acid,” Plast. Massy, No. 3, 31–36 (2010).

    Google Scholar 

  37. Z. S. Khasbulatova, “Compositions of polyesters of n‑hydroxybenzoic acid,” Plast. Massy, No. 5, 16–22 (2010).

    Google Scholar 

  38. A. K. Mikitaev and Z. S. Khasbulatova, “Copolyesters and block copolyesters of n-hydroxybenzoic and phthalic acids,” Plast. Massy, No. 5, 27–33 (2012).

    Google Scholar 

  39. A. M. Kharaev, R. Ch. Bazheva, F. K. Kazancheva, et al., “Modified aromatic polyesters,” Nauchn. Al’m. 12 (10-3), 385–388 (2015).

  40. C. H. R. M. Wilsens, J. M. G. A. Verhoeven, B. A. J. Noordover, et al., “Thermotropic polyesters from 2,5-furandicarboxylic acid and vanillic acid: Synthesis. Thermal properties. Melt behavior and mechanical performance,” Macromolecules 47 (10), 3306–3316 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ya. Deberdeev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmetshina, A.I., Ignat’eva, E.K., Deberdeev, T.R. et al. Thermotropic Liquid Crystalline Polyesters with Mesogenic Fragments Based on the p-Oxybenzoate Unit. Polym. Sci. Ser. D 12, 427–434 (2019). https://doi.org/10.1134/S1995421219040026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421219040026

Keywords:

Navigation