Skip to main content
Log in

Preparation of Fe2O3 nanoparticles by acoustic and hydrodynamic cavitation techniques and corrosion inhibition release studies using its nanocontainers

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The present work deals with two parts, the first one deals with the synthesis of Fe2O3 nanoparticles using acoustic and hydrodynamic cavitation techniques and the second one deals with layer by layer (LBL) assembly of Fe2O3 nanocontainers by loading a corrosion inhibitor, benzotriazole, in polyelectrolyte layers. The nanoparticles obtained from both these techniques are used as a core in the preparation of nanocontainers. The morphology of the nanoparticles and nanocontainers was analyzed by TEM. The release rate and corrosion inhibition properties of nanocontainers were evaluated for various prepared samples. Electrochemical impedance test and corrosion inhibition performance of Fe2O3 nanocontainers dispersed in epoxy coating were also evaluated. The presence of nanocontainers in the epoxy resin decreases the corrosion rate from 7.6 to 0.05 mm/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montemor, M.F, Surf. Coat. Technol., 2014, vol. 258, p. 17.

    Article  Google Scholar 

  2. Pappas, S.P., Wick, Z.W., Jr., and Jone, F.N., in Organic Coating: Science and Technology, New York: John Wiley & Sons, 2007, p. 137.

    Google Scholar 

  3. Chatterjee, P., Benerjee, M.K., and Mukherjee, K.P, Indian J. Sci. Technol., 2011, vol. 29, p. 191.

    Google Scholar 

  4. Schweitser, P.A., Corrosion of Linings and Coatings: Cathodic and Inhibitor Protection and Corrosion Monitoring, Boca Raton, FL: CRC Press, 2006.

    Book  Google Scholar 

  5. Marathe, R.J., Chaudhari, A.B., Hedaoo, R.K., et al, R. Soc. Chem. Adv., 2015, vol. 5, p. 15539.

    Google Scholar 

  6. Sayin, K. and Karkas, D, Corros. Sci., 2013, vol. 77, p. 37.

    Article  Google Scholar 

  7. Wang, H. and Akid, R, Corros. Sci., 2007, vol. 49, p. 4491.

    Article  Google Scholar 

  8. Granizo, N., Vega, J.M., Fuente, D.L., et al, Prog. Org. Coat., 2012, vol. 75, p. 147.

    Article  Google Scholar 

  9. Sonawane, S.H., Bhanvase, B.A., Jamali, A.A., et al, Chem. Eng. J., 2012, vols. 189–190, p.464.

    Article  Google Scholar 

  10. Andreeva, D. and Shuhukin, D., US Patent 20100206745 A1, 2010.

    Google Scholar 

  11. Zheludkevich, M.L., Shuhukin, D.G., Yasakau, K.A., et al, Chem. Mater., 2007, vol. 19, p. 402.

    Article  Google Scholar 

  12. Carneiro, J., Caetano, A.F., Kuznetsova, A., et al, R. Soc. Chem. Adv., 2015, vol. 5, p. 39916.

    Google Scholar 

  13. Chen, T., Chen, R., Jin, Z., and Liu, J, J. Mater. Chem. A, 2015, vol. 3, p. 9510.

    Article  Google Scholar 

  14. Wang, M.D., Liu, M., and Fu, J, J. Mater. Chem. A, 2015, vol. 3, p. 6423.

    Article  Google Scholar 

  15. Zheng, Z., Schenderlein, M., Huang, X., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 22756.

    Article  Google Scholar 

  16. John, S., Joseph, A., Jose, A.J., and Narayana, B, Prog. Org. Coat., 2015, vol. 84, p. 28.

    Article  Google Scholar 

  17. Shchukin, D. and Mohwald, H., US Patent 20090078153 A1, 2009.

    Google Scholar 

  18. Martinez, A.I., Garcia-Lobato, M.A., and Perry, D.L., in Research in Nanotechnology Development, New York: Nova Science Publ., 2009, vol.17.

  19. Bhanvase, B.A., Kutbuddin, Y., Selokar, N.R., et al, Chem. Eng. Commun., 2013, vol. 231, p. 345.

    Google Scholar 

  20. Wu, W., He, Q., and Jiang, C, Nanoscale Res. Lett., 2008, vol. 3, p. 397.

    Article  Google Scholar 

  21. Wu, W., Xiao, X.H., Zhang, S.F., et al, Nanoscale Res. Lett., 2010, vol. 5, p. 1474.

    Article  Google Scholar 

  22. Sonawane, S.H., Gumfekar, S.P., Kate, K.H., et al, Int. J. Chem. Eng., 2010, vol. 2010, Article ID 242963.

  23. Mohanpatra, M. and Anand, S, Int. J. Eng. Sci. Technol., 2010, vol. 2, p. 127.

    Google Scholar 

  24. Shafi, K.V.P.M., Ulman, A., Dyal, A., et al, Chem. Mater., 2002, vol. 14, p. 1778.

    Article  Google Scholar 

  25. Bhanvase, B.A. and Patel, M.A, Corros. Sci., 2014, vol. 88, p. 170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirish Sonawane.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, S., Bagale, U., Ashokkumar, M. et al. Preparation of Fe2O3 nanoparticles by acoustic and hydrodynamic cavitation techniques and corrosion inhibition release studies using its nanocontainers. Prot Met Phys Chem Surf 53, 850–858 (2017). https://doi.org/10.1134/S2070205117050203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117050203

Keywords

Navigation