Skip to main content
Log in

Measurement standards in gravimetry

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The analysis of the definition of a measurement standard in metrology applied to the field of gravimetry shows that both gravity networks and absolute ballistic gravimeters can be the measurement standards in gravimetry, i.e., the standards of the acceleration unit in the measurement of free-fall acceleration. Currently, the absolute ballistic method is recognized as the primary reference method for the measurement of free-fall acceleration. As the measurement standard of acceleration, a derived physical quantity, the ballistic gravimeter should be traceable to the measurement standards of length and time (frequency) units. The accuracy level of absolute ballistic gravimeters may be determined by comparing the results of their measurements organized at sites where several gravimeters can perform measurements simultaneously according to a specified technical protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torge, W., Gravimetry, de Gruyter, W., Ed., Berlin, New York, 1989.

  2. International Vocabulary of Basic and General Terms in Metrology, JCGM, 2008.

  3. Milton, M.J.T. and Quinn, T.J., Primary Methods for the Measurement of Amount of Substance, Metrologia, 2001, vol. 38, no. 4, pp. 289–296.

    Article  Google Scholar 

  4. Torge, W., The Changing Role of Gravity Reference Networks, IAG Symp., 1998, vol. 119, pp. 1–10.

    Google Scholar 

  5. Boedecker, G., Activity Report 1995–1998, IGC Working Group 2: Gravity Standards, BGI Bulletin D’Information, 1998, no. 83, pp. 25–27.

  6. Boedecker, G., World Gravity Standards — Present Status and Future Challenges, Metrologia, 2002, vol. 39, pp. 429–433.

    Article  Google Scholar 

  7. Wilmes, H., Richter, B., and Falk, R., Absolute Gravity Measurements: a System by Itself, Gravity and Geoid, 2002, pp. 19–25.

  8. Vitushkin, L.F., Krivtsov, E.P., and Sinelnikov, A.E., Progress in Metrology and Limits in Measurements in Geophysics, in Problemy geofiziki XXI veka (Problems in Geophysics of XXI Century), Nauka, 2003, vol. 2, pp. 245–265.

    Google Scholar 

  9. Peters, A., Chung, K.Y., and Chu, S., High-Precision Gravity Measurements Using Atom Interferometry, Metrologia, 2001, vol. 38, pp. 26–61.

    Article  Google Scholar 

  10. Kasevich, M. and Chu, S., Measurement of the Gravitational Acceleration of an Atom with a Light-Pulse Atom Interferometer, Appl. Phys. B, 2002, vol. 54, pp. 321–332.

    Article  Google Scholar 

  11. Germak, A., Desogus, S., and Origlia, C., Interferometer for the IMGC Rise-and-Fall Absolute Gravimeter, Metrologia, 2001, vol. 39, pp. 471–475.

    Article  Google Scholar 

  12. Niebauer, T.M., et al., A New Generation of Absolute Gravimeters, Metrologia, 1995, vol. 32, pp. 159–180.

    Article  Google Scholar 

  13. Kalish, E.N., Stus, Yu.F., and Smirnov, M.G., New Measuring-Computing Unit for a Laser Ballistic Gravimeter, Metrologia, 1995, vol. 32, pp. 159–180.

    Article  Google Scholar 

  14. Vitushkin, L.F., Orlov, O.A., and Nalivaev, V.V., Test Measurements of Free-Fall Acceleration Using the FG5-108 Gravimeter with a Compact Diode-Pumped Solid-State Nd:YVO4/KTP/I2 Laser at the Wavelength of 532 nm, Metrologia, 1995, vol. 32, pp. 159–180.

    Article  Google Scholar 

  15. Vitushkin, L. and Orlov, O., A Compact Frequency-Stabilized Nd:YVO4/KTP/I2 Laser at 532 nm for Laser Interferometry and Wavelength Standards, Proc. SPIE, 2005, vol. 5856, pp. 281–286.

    Article  Google Scholar 

  16. Arnautov, G.P., et al., High-Precision Gravitational Acceleration Measurement with Laser Interferometry, Proc. SPIE, 2002, vol. 4900, pp. 139–145.

    Article  Google Scholar 

  17. Vitouchkine, A.L. and Faller, J.E., Measurement Results with a Small Cam-Driven Absolute Gravimeter, Metrologia, 2002, vol. 39, pp. 465–469.

    Article  Google Scholar 

  18. Boulanger, Yu. D., Arnautov, G. P., and Scheglov, S. N., Results of Comparison of Absolute Gravimeters. Sèvres, 1981, Bull. Inf. Bur. Gravim. Int., 1983, vol. 52, pp. 99–124.

    Google Scholar 

  19. Vitushkin, L., Jiang, Z., Becker, M., Francis, O., Germak, A., Amalvict, M., Bayer, R., Bilker-Koivula, M., D’Agostino, G., Desogus, S., Faller, J., Falk, R., Hinderer, J., Gagnon, C., Jakob, T., Kalish, E., Kostelecky, J., Lee, C., Liard, J., Lokshyn, Yu., Luck, B., Maakinen, J., Mizushima, S., Le Moigne, N., Nalivaev, V., Origlia, C., Palinkas, V., Pujol, E.R., Richard, Ph., Robertsson, L., Ruess, D., Schmerge, D., Stus, Yu., Svitlov, S., Thies, S., Ullrich, Ch., Van Camp, M., Vitushkin, A., and Wilmes, H., Results of the Seventh International Comparison of Absolute Gravimeters ICAG-2005 at the Bureau International des Poids et Mesures, Sèvres, IAG Symp., 2010, vol. 135, pp. 47–53.

    Google Scholar 

  20. Robertsson, L., et al., Results from the Fifth International Comparison of Absolute Gravimeters, ICAG-1997, Metrologia, 2001, vol. 38, pp. 71–78.

    Article  Google Scholar 

  21. Vitushkin, L., et al., Results of the Sixth International Comparison of Absolute Gravimeters, ICAG-2001, Metrologia, 2002, vol. 39, pp. 407–424.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitushkin, L. Measurement standards in gravimetry. Gyroscopy Navig. 2, 184–191 (2011). https://doi.org/10.1134/S2075108711030126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108711030126

Keywords

Navigation