Skip to main content
Log in

On the effectiveness of rotation of the inertial measurement unit of a FOG-based platformless ins for marine applications

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The errors of an autonomous platformless inertial navigation system (INS) with fiber-optic gyros (FOG), the inertial measurement unit (IMU) of which is mounted in a two-axis gimbal suspension, are analyzed. The quality criteria and the kinematic scheme of the gimbal are considered. The optimal law of IMU rotation from the standpoint of the selected minimum criterion has been calculated. Simulation was carried out to study the effects of different errors of the IMU sensors on the INS accuracy. The results obtained are confirmed by the development tests of a FOG-based INS designed by Concern CSRI Elektropribor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. www.ixblue.com

  2. Department of Defense, Developing Science & Technologies List, Section 16: Positioning, Navigation and Time Technology. Office of the Under Secretary of Defense, Acquisition, Technology and Logistics, Washington, D.C., January 2006.

    Google Scholar 

  3. Barbour, N. and Schmidt, G., Inertial Sensor Technology Trends, IEEE Sensors Journal, vol. 1, no. 4, December 2001, pp. 332–339.

    Article  Google Scholar 

  4. Paturel, Y., Rumoroso, V., Chapelon, A., and Honthaas, J.Y., MARINS, the first FOG navigation system for submarine, Symposium Gyro Technology, 2006.

    Google Scholar 

  5. Walsh, Ed., Navy and industry investigate new superaccurate optical gyros for possible use on ballistic missile submarines, Military & Aerospace Electronics, 2001.

    Google Scholar 

  6. NATO STANAG 4278: Method of expressing navigation accuracies, Brusel-2003.

    Google Scholar 

  7. Svoboda, P., Luzica, S., and Grecman, P., Mode-s positional data error analysis from the point of view of air traffic control, Annals of the University of Craiova, Electrical Engineeiring series, no. 30, 2006, pp. 335–339.

    Google Scholar 

  8. Levinson, E. and Majure R., MARLIN–Next generation marine inertial navigator. Symposium Gyro Technology, Stuttgart, 22–23 Sept., 1987.

    Google Scholar 

  9. Peshekhonov, V.G., Gyroscopic Navigation Systems: Current Status and Prospects, Gyroscopy and Navigation, 2011, vol. 2, no.3, pp. 111–118.

    Article  Google Scholar 

  10. www.sperrymarine.com

  11. www.northropegrumman.com

  12. Guo Wei, Xingwu Long, and Xudong Yu, Research on high precision rotating inertial navigation system with ring laser gyroscope, 22 nd Saint Petersburg Int. Conf. on Integrated Navigation Systems, May, 2015.

    Google Scholar 

  13. Fei Yu and Qian Sun, Angular rate optimal design for the rotary strapdown inertial navigation system, Sensors 2014, 14 (4), pp. 7156–7180.

    Article  Google Scholar 

  14. Zhenguo Yuan and Lin Zhao, Error analysis of rotary SINS sensor, Sensors & Transducers, vol. 156, no. 9, September 2013, pp. 35–39.

    Google Scholar 

  15. www.elektropribor.spb.ru

  16. Gyro indexing compensation method and system; US Patent 8566055 B1, 2013.

  17. Ringlein, M.J., Barnett, N.J., and May, M.B., Next generation strategic submarine navigator Marvin B., AIAA 2000, http://www.researchgate.net

    Google Scholar 

  18. Vaisgant, I. B., Choosing the rate of the INS platform forced rotation, Giroskopiya i Navigatsiya, 1999, no. 4, pp. 116–120.

    Google Scholar 

  19. Lefèvre, H.C., The fiber-optic gyroscope: Achievement and perspective, 19 th Saint Petersburg Int. Conf. on Integrated Navigation Systems, 2012, pp. 122–126.

    Google Scholar 

  20. Slyusar’, V.M., On the effect of instrumental factors on the strapdown INS angular rate drift, Giroskopiya i Navigatsiya, 2009, no.4, pp. 47–61.

    Google Scholar 

  21. Emel’yantsev, G.I., Litmanovich, Yu.A., and Moshkin, N.N., On increasing information autonomy of strapdown INS for marine application, Giroskopiya i Navigatsiya, 2014, no. 3, pp. 15–28.

    Google Scholar 

  22. Zel’dovich, S.M. et al., Avtokompensatsiya instrumental’nykh pogreshnostei (Autocompensation of Instrumental Errors, Leningrad: Sudostroenie, 1976.

    Google Scholar 

  23. Rivkin, S.S. Teoriya giroskopicheskikh ustroistv (Theory of gyroscopic devices), vol. 2, Leningrad: Sudostroenie, 1964.

    Google Scholar 

  24. Luk’yanov, D.P., Mochalov, A.V., Odintsov, A.A., Vaisgant, I.B., Inertsial’nye Navigatsionnye Sistemy Morskikh Ob”ektov (Inertial Navigation Systems of Marine Vehicles, Leningrad: Sudostroenie, 1989.

    Google Scholar 

  25. Ishlinskii, A.Yu., Mekhanika giroskopicheskikh sistem (Mechanics of Gyroscopic Systems), ÀN SSSR, 1963.

    Google Scholar 

  26. Anuchin, O.N. and Emel’yantsev, G.I., Integrirovannye sistemy orientatsii i navigatsii dlya morskikh podvizhnukh ob”ektov (Integrated Navigation and Orientation Systems for Marine Vehicles), St. Petersburg: CSRI Elektropribor, 2003.

    Google Scholar 

  27. Karakashev, V.A., Avtonomnye inertsial’nye navigatsionnye sistemy: uchebnoe posobie (Autonomous Inertial Navigation Systems), Leningrad: LITMO, 1983.

    Google Scholar 

  28. www.sagem.com

  29. Stepanov, A.P., Ignat’ev, S.V., and Vinokurov, I.Yu. et al., Determining the optimum law for control of the rotation drive on the basis of minimization of INS errors, Materialy 4 Vserossiiskoi mul’tikonferentsii po problemam upravleniya MKPU-2011 (Materials of the 4th All-Russian Multi-Conference on the Problems of Control), 2011, vol. 2, Taganrog: TTI YuFU, pp. 316–318.

    Google Scholar 

  30. Blazhnov, B.A., Emel’iantsev, G.I., Koshaev, D.A., Semenov, I.V., Stepanov, A.P., et al. Integrated INS/GPS Orientation and Navigation System Built by a Tightly-Coupled Scheme, XVI Sankt-Peterburgskaya mezhd. konf. po integrirovannym informatsionnym sistemam (XVI Saint-Petersburg Int. Conf. on Integrated Information Systems), St.Petersburg, 25–27 May, 2009, pp. 153–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Stepanov.

Additional information

Published in Giroskopiya i Navigatsiya, 2015, No. 4, pp. 42–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, A.P., Emel’yantsev, G.I. & Blazhnov, B.A. On the effectiveness of rotation of the inertial measurement unit of a FOG-based platformless ins for marine applications. Gyroscopy Navig. 7, 128–136 (2016). https://doi.org/10.1134/S2075108716020103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108716020103

Keywords

Navigation