Skip to main content
Log in

Database on the bandgap of inorganic substances and materials

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A database (DB) on the bandgap of inorganic substances available via the Internet (http://bg.imet-db.ru) was developed for the information service of specialists in the sphere of inorganic chemistry and materials science. The DB is integrated with other information systems on the properties of inorganic substances and materials, which provides the search of a wide range of parameters of a specific substance. The possibility of the use of the information from the developed DB for the search of relations between the bandgap width and other parameters of thermoelectric materials and for predicting the bandgap of chalcopyrites is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phizicheskie i khimicheskie svoistva poluprovodnikovykh materialov iz poroshkov tugoplavkikh soedinenii. Spravochnik (Physical and Chemical Properties of Semiconducting Materials from Powders of Refractory Compounds. A Handbook), Novoselova, A.V., Ed., Moscow: Nauka, 1979.

  2. Elektronnyi spravochnik po svoistvam materialov Springer Materials (Electronic Handbook on Material Properties: Springer Materials). http://www.springermaterials.com/docs/index.html#n_43454_Semi-conductivity

  3. Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R.H., Nelson, L.J., Hart, G.L.W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., and Levy, O., AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations, Comp. Mat. Sci., 2012, vol. 58, pp. 227–235.

    Article  CAS  Google Scholar 

  4. Taylor, R.H., Rose, F., Toher, C., Levy, O., Yang, K., Buongiorno-Nardelli, M., and Curtarolo, S., A RESTful API for exchanging materials data in the AFLOWLIB.org consortium, Comp. Mat. Sci., 2014, vol. 93, pp. 178–192.

    Article  Google Scholar 

  5. Elektronnaya baza dannykh po svoistvam poluprovodnikovykh materialov (Electronic Data Base on Semiconducting Material Properties). http://www.matprop.ru/

  6. Kiselyova, N.N., Dudarev, V.A., and Zemskov, V.S., Computer information resources in inorganic chemistry and material science, Russ. Chem. Rev., 2010, vol. 79 (2), pp. 145–166.

    Article  CAS  Google Scholar 

  7. Kiselyova, N.N., Prokoshev, I.V., Dudarev, V.A., Khorbenko, V.V., Belokurova, I.N., Podbel’skii, V.V., and Zemskov, V.S., Internet-accessible electronic materials database system, Inorg. Mater., 2004, vol. 40 (3), pp. 321–325.

    Article  CAS  Google Scholar 

  8. Khristoforov, Yu.I., Khorbenko, V.V., Kiselyova, N.N., Podbel’skii, V.V., Belokurova, I.N., and Zemskov, V.S., Internet-accessible database on phase diagrams of semiconductor systems, Izvestiya Vuzov. Mater. Elektr. Techn., 2001, No. 4, pp. 50–55.

    Google Scholar 

  9. Yudina, N.V., Petukhov, V.V., Cheremushkin, E.A., Kiseleva, N.N., and Zemskov, V.S., Data bank on acoustooptical, electrooptical, and nonlinear optical properties of materials, Crystall. Rep., 1996, vol. 41 (3), pp. 464–468.

    Google Scholar 

  10. Kiselyova, N.N., Murat, D., Stolyarenko, A., Dudarev, V.A., Podbel’skii, V.V., and Zemskov, V.S., Data base on “Phases” ternary inorganic compound properties in Internet, Inform. Russ. Resur., 2006, No. 4, pp. 21–23.

    Google Scholar 

  11. Xu, Y., Yamazaki, M., and Villars, P., Inorganic materials database for exploring the nature of material, Jap. J. Appl. Phys., 2011, vol. 50 (11), pp. 11RH02-1–11RH02-5.

    Article  Google Scholar 

  12. Gorelik, S.S. and Dashevskii, M.Ya., Materialovedenie poluprovodnikov i metallovedenie (Material and Metal Science of Semiconductors) Moscow: Metallurgiya, 1973.

    Google Scholar 

  13. Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev. A. 1965, vol. 140 (4), A1133–A1138.

    Article  Google Scholar 

  14. Dreizler, R. and Gross, E., Density Functional Theory, New York: Plenum, 1995.

    Google Scholar 

  15. Yu, P. and Cardona, M., Fundamentals of Semiconductors: Physics and Materials Properties, London: Springer-Verlag, 2009.

    Google Scholar 

  16. Hybertsen, M.S. and Louie, S.G., First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators, Phys. Rev. Lett., 1985, vol. 55 (13), pp. 1418–1421.

    Article  CAS  Google Scholar 

  17. Sootsman, J.R., Xhung, D.Y., and Kanatzidis, M.G., New and old concepts in thermoelectric materials, Angew. Chem. Int., 2009, vol. 47, pp. 8616–8639.

    Article  Google Scholar 

  18. Korzhuev, M.A. and Svechnikova, T.E., Thermodynamic restrictions for useful power of the automotive thermoelectric generators and prospects of their use in transport, J. Thermoelectricity, 2013, No. 3, pp. 54–70.

    Google Scholar 

  19. Korzhuev, M.A. and Katin, I.V., Nano-like effects in crystalline thermoelectric materials at high temperatures, in Proc. Int. Conf.: Nanomeeting–2013. Physics, Chemistry and Application of Nanostructures, London, 2013, pp. 569–572.

    Chapter  Google Scholar 

  20. Korzhuev, M.A., Effect of phonon and electron mean free path on figure of merit Z and power W parameters of thermoelectric structures, in Thermoelectrics and Their Application, Fedorov, M.I. and Lukyanova, L.N., Eds., St. Peterburg: Peter. Inst. Yader. Fiz., 2013, pp. 99–104.

    Google Scholar 

  21. Korzhuev, M.A., Thermoelectric nanostructures: Pros and cons, J. Thermoelectricity 2013, No. 5, pp. 10–21.

    Google Scholar 

  22. Kiselyova, N.N., Stolyarenko, A.V., Gu, T., and Lu, W., Computer-aided design of new wide bandgap semiconductors with chalcopyrite structure, in Proc. 9th Russ.-China Symp. “New Materials and Technologies”, 2007, pp. 351–355.

    Google Scholar 

  23. Kiselyova, N.N., Stolyarenko, A.V., Ryazanov, V., Sen’ko, O., and Dokukin, A., Application of machine training methods to design of new inorganic compounds, in: Diagnostic Test Approaches to Machine Learning and Commonsense Reasoning Systems, Naidenova, X.A. and Ignatov, D.I., Eds., Hershey: IGI Global, 2012, pp. 197–220.

    Google Scholar 

  24. Siebentritt, S. and Rau, U., Wide Gap Chalcopyrites Heidelberg-Berlin: Springer-Verlag, 2006.

    Book  Google Scholar 

  25. Vavilov, V.S., Physics and applications of wide bandgap semiconductors, Phys.-Usp., 1994, vol. 37 (3), 269–277 (1994).

    Article  Google Scholar 

  26. Kiselyova, N.N., Podbel’skii, V.V., Ryazanov, V.V., and Stolyarenko, A.V., Computer-aided design of new inorganic compounds with composition (ABX)2 (X = S, Se, Te), Inorg. Mater.: Appl. Res., 2010, vol. 1 (1), pp. 9–16.

    Article  Google Scholar 

  27. Kiselyova, N.N., Stolyarenko, A.V., Sen’ko, O.V., Ryazanov, V.V., and Dokukin, A.A., Prediction of new inorganic compounds of ABX content (X = As, Sn, Sb, Pb or Bi), Materialovedenie, 2012, No. 6, pp. 36–45.

    Google Scholar 

  28. Pettifor, D.G., A chemical scale for crystal-structure maps, Solid State Commun., 1984, vol. 51 (1), pp. 31–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kiselyova.

Additional information

Original Russian Text © N.N. Kiselyova, V.A. Dudarev, M.A. Korzhuyev, 2015, published in Materialovedenie, 2015, No. 7, pp. 3–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselyova, N.N., Dudarev, V.A. & Korzhuyev, M.A. Database on the bandgap of inorganic substances and materials. Inorg. Mater. Appl. Res. 7, 34–39 (2016). https://doi.org/10.1134/S2075113316010093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316010093

Keywords

Navigation