Skip to main content
Log in

Computer-Aided Design of Compounds with Crystal Structure of Melilites

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Compounds of compositions \({\text{A}}_{2}^{{ + 2}}{\text{B}}_{2}^{{ + 3}}\)С+4О7 and А+2\({\text{B}}_{{\text{2}}}^{{{\text{ + 2}}}}{\text{C}}_{2}^{{ + 4}}\)О7 that are not yet obtained (A and B are cations of different elements; C is Si or Ge) with a melilite-type crystal structure are predicted and their crystal lattice parameters are evaluated. Predicting is based only on data on the properties of elements and simple oxides. The mean accuracy of predicting is at least 85%. The calculations are performed using scikit-learn system programs and an information analytical system based on machine learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Becker, P., Bohaty L., Liebertz J., et al., Non-centrosymmetric tetragonal Sr2ZnGe2O7—a novel melilite-type nonlinear-laser crystal offering χ(2)-, χ(3)-, and cascaded χ(3) ↔ χ(2)-interactions, Laser Phys. Lett., 2010, vol. 7, no. 5, pp. 367–377.

  2. Shen, C., Zhang, S., Cao, W., et al., Thermal and electromechanical properties of melilite-type piezoelectric single crystals, J. Appl. Phys., 2015, vol. 117, no. 6, art. ID 064106.

  3. Zou, Z.-Y., Lan, X.-K., Lu, W.-Z., et al., Novel high Curie temperature Ba2ZnSi2O7 ferroelectrics with low-permittivity microwave dielectric properties, Ceram. Int., 2016, vol. 42, no. 14, pp. 16387–16391.

    Article  CAS  Google Scholar 

  4. Hutanu, V., Sazonov, A., Meven, M., et al., Determination of the magnetic order and the crystal symmetry in the multiferroic ground state of Ba2CoGe2O7, Phys. Rev. B, 2012, vol. 86, no. 10, art. ID 104401.

    Article  CAS  Google Scholar 

  5. Shen, C., Wang, D., Xu, H., et al., Bulk crystal growth and thermal, spectroscopic and laser properties of disordered melilite Nd: Ca2Ga2SiO7 single crystal, J. Alloys Compd., 2017, vol. 727, pp. 8–13.

    Article  CAS  Google Scholar 

  6. Luo, Y. and Xia, Z., Effect of partial nitridation on the structure and luminescence properties of melilite-type Ca2Al2SiO7:Eu2+ phosphor, Opt. Mater., 2014, vol. 36, no. 11, pp. 1874–1878.

    Article  CAS  Google Scholar 

  7. Kiseleva, N.N., Murat, D., Stolyarenko, A., et al., Database on “phases” ternary inorganic compound properties in Internet, Inf. Russ. Resur., 2006, no. 4, pp. 21–23.

  8. Kiselyova, N.N., Dudarev, V.A., and Korzhuyev, M.A., Database on the bandgap of inorganic substances and materials, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 1, pp. 34–39.

    Article  Google Scholar 

  9. Ochi, Y., Morikawa, H., Minato, I., and Marumo, F., Preparation and magnetic property of new rare earth compounds R2GeBe2O7 (R = La, Pr, Sm, Gd, Dy, Er) and Y2GeBe2O7, Mater. Res. Bull., 1982, vol. 17, no. 7, pp. 911–916.

    Article  CAS  Google Scholar 

  10. Mill’, B.V. and Baibakova, G.D., New compounds with melilite structure: Ln2SiBe2O7 (Ln = Nd–Eu, Tb, Ho–Lu) and Ln2GeBe2O7 (Ln = Nd, Eu, Tb, Ho, Tm–Lu), Zh. Neorg. Khim., 1990, vol. 35, no. 3, pp. 604–607.

    Google Scholar 

  11. Mill’, B.V. and Baibakova, G.D., Ba2CdGe2O7 is a terminal element of okermanite series, Zh. Neorg. Khim., 1990, vol. 35, no. 3, pp. 789–791.

    Google Scholar 

  12. Kiselyova, N.N., Stolyarenko, A.V., Ryazanov, V.V., et al., A system for computer-assisted design of inorganic compounds based on computer training, Pattern Recognit. Image Anal., 2011, vol. 21, no. 1, pp. 88–94.

    Article  Google Scholar 

  13. Senko, O.V., An optimal ensemble of predictors in convex correcting procedures, Pattern Recognit. Image Anal., 2009, vol. 19, no. 3, pp. 465–468.

    Article  Google Scholar 

  14. Zhuravlev, Yu.I., Ryazanov, V.V., and Sen’ko, O.V., Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya (Recognition. Mathematical Methods. Program System. Practical Use), Moscow: Fazis, 2006.

  15. Pettifor, D.G., A chemical scale for crystal-structure maps, Solid State Commun., 1984, vol. 51, no. 1, pp. 31–34.

    Article  CAS  Google Scholar 

  16. Sirazhiddinov, N.A., Mirababaeva, N.N., Grebenshchikov, R.G., and Stroganov, E.V., Isomorphism of barium germanosilicates in the Ba2SiO4,Ba2GeO4|| MSiO3,MGeO4 quaternary reciprocal system, Russ. J. Inorg. Chem., 1974, vol. 19, no. 3, pp. 817–818.

    Google Scholar 

  17. Kaiser, J.W. and Jeitschko, W., Crystal structure of the new barium zinc silicate Ba2ZnSi2O7, Z. Kristallogr., 2002, vol. 217, no. 1, pp. 25–26.

    CAS  Google Scholar 

  18. Armbruster, T., Rothlisberger, F., and Seifert, F., Layer topology, stacking variation, and site distortion in melilite-related compounds in the system CaO–ZnO–GeO2–SiO2, Am. Miner., 1990, vol. 75, pp. 847–858.

    CAS  Google Scholar 

  19. Aleksovska, S., Dimitrovska, S., and Kuzmanovski, I., Crystal structure prediction in orthorhombic ABO3 perovskites by multiple linear regression and artificial neural networks, Acta Chim. Sloven., 2007, vol. 54, no. 3, pp. 574–582.

    CAS  Google Scholar 

  20. Javed, S.G., Khan, A., Majid, A., et al., Lattice constant prediction of orthorhombic ABO3 perovskites using support vector machines, Comput. Mater. Sci., 2007, vol. 39, no. 3, pp. 627–634.

    Article  CAS  Google Scholar 

  21. Khan, A. and Javed, S.G., Predicting regularities in lattice constants of GdFeO3-type perovskites, Acta Crystallogr., 2008, vol. 64, no. 1, pp. 120–122.

    Article  CAS  Google Scholar 

  22. Li, C., Thing, Y., Zeng, Y., et al., Prediction of lattice constant in perovskites of GdFeO3 structure, J. Phys. Chem. Solids, 2003, vol. 64, no. 11, pp. 2147–2156.

    Article  CAS  Google Scholar 

  23. Majid, A., Khan, A., Javed, G., and Mirza, A.M., Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression, Comput. Mater. Sci., 2010, vol. 50, no. 2, pp. 363–372.

    Article  CAS  Google Scholar 

  24. Dimitrovska, S., Aleksovska, S., and Kuzmanovski, I., Prediction of the unit cell edge length of cubic \({\text{A}}_{2}^{{2 + }}\)BB'O6 perovskites by multiple linear regression and artificial neural networks, Central Eur. J. Chem., 2005, vol. 3, no. 1, pp. 198–215.

    Google Scholar 

  25. Majid, A., Khan, A., and Choi, T.-S., Predicting lattice constant of complex cubic perovskites using computational intelligence, Comput. Mater. Sci., 2011, vol. 50, no. 6, pp. 1879–1888.

    Article  CAS  Google Scholar 

  26. Kockan, U. and Evis, Z., Prediction of hexagonal lattice parameters of various apatites by artificial neural network, J. Appl. Cryst., 2010, vol. 43, no. 4, pp. 769–779.

    Article  CAS  Google Scholar 

  27. Legrain, F., Carrete, J., van Roekeghem, A., et al., Materials screening for the discovery of new half-Heuslers: machine learning versus ab initio methods, J. Phys. Chem., 2018, vol. 122, no. 2, pp. 625–632.

    Article  CAS  Google Scholar 

  28. Oliynyk, A.O., Adutwum, L.A., Rudyk, B.W., et al., Disentangling structural confusion through machine learning: structure prediction and polymorphism of equiatomic ternary phases ABC,J. Am. Chem. Soc., 2017, vol. 139, no. 49, pp. 17870–17881.

    Article  CAS  Google Scholar 

  29. Zeng, Y., Chua, S.J., and Wu, P., On the prediction of ternary semiconductor properties by artificial intelligence methods, Chem. Mater., 2002, vol. 14, no. 7, pp. 2989–2998.

    Article  CAS  Google Scholar 

  30. Pedregosa, F., Varoquaux, G., Gramfort, A., et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–2830.

    Google Scholar 

  31. Ershov, E.B., Distribution of the determination coefficient to the general case of linear regression evaluated using various versions of the least squares method, Ekon. Matem. Metody, 2002, vol. 38, no. 3, pp. 107–120.

    Google Scholar 

  32. Theil, H., A rank-invariant method of linear and polynomial regression analysis, Parts I, II, III, Proc. K. Ned. Akad. Wet., Ser. A: Math. Sci., 1950, vol. 53, pp. 386–392, 521–525, 1397–1412.

  33. Sen, P.K., Estimates of the regression coefficient based on Kendall’s tau, J. Am. Stat. Assoc., 1968, vol. 63, pp. 1379–1389.

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project nos. 17-07-01362 and 18-07-00080. The study was carried out as part of the state assignment (project nos. 007-00129-18-00 and 0063-2020-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kiselyova.

Additional information

Translated by I. Obrezanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselyova, N.N., Dudarev, V.A., Ryazanov, V.V. et al. Computer-Aided Design of Compounds with Crystal Structure of Melilites. Inorg. Mater. Appl. Res. 11, 787–794 (2020). https://doi.org/10.1134/S2075113320040188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320040188

Keywords:

Navigation