Skip to main content
Log in

Prediction of Space Groups for Perovskite-Like \({\text{A}}_{{\text{2}}}^{{{\text{II}}}}\)BIIIB'VO6 Compounds

  • PHYSICOCHEMICAL FUNDAMENTALS OF CREATING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The prediction of new compounds having such composition as \({\text{A}}_{{\text{2}}}^{{{\text{II}}}}\)BIIIB'VO6 was carried out, the type of distortion of their perovskite-like lattice and the space group were predicted, and the crystal lattice parameters of the predicted compounds were estimated. For the prediction, only the property values of the chemical elements were used. The programs based on machine learning algorithms for different variants of neural networks, a linear machine, the formation of logical regularities, k-nearest neighbors, and support vector machine showed the best results when predicting the type of distortion of a perovskite-like lattice. When evaluating the lattice parameters, programs based on algorithms for orthogonal matching pursuit and automatic relevance determination regression were the most accurate methods. The prediction accuracy for the type of distortion of perovskite-like lattice was no less than 74%. The accuracy of estimating the lattice linear parameters was within ±0.0120–0.8264 Å, and the accuracy of angles β for the monoclinic distortion of the lattice amounted to ±0.08°–0.74°. The calculations were carried out using systems based on machine learning methods. To evaluate the prediction accuracy, an examination recognition in the cross-validation mode was used for the compounds included in the sample for machine learning. The predicted compounds are promising for searching for novel magnetic, thermoelectric, and dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Corredor, L.T., Téllez, D.A.L., Buitrago, D.M., Aguiar, J.A., and Roa-Rojas, J., Magnetic properties and structural characterization of Sr2RuHoO6 complex perovskite, Phys. B, 2010, vol. 407, no. 16, pp. 3085–3088. https://doi.org/10.1016/j.physb.2011.12.031

  2. Hinatsu, Y., Doi, Y., and Wakeshima, M., Antiferromagnetic transitions of osmium-containing rare earth double perovskites Ba2LnOsO6 (Ln = rare earths), J. Solid State Chem., 2013, vol. 206, pp. 300–307. https://doi.org/10.1016/j.jssc.2013.08.020

    Article  CAS  Google Scholar 

  3. Li, M.-R., Retuerto, M., Deng, Z., Stephens, P.W., Croft, M., Huang, Q., Wu, H., Deng, X., Kotliar, G., Sanchez-Benitez, J., Hadermann, J., Walker, D., and Greenblatt, M., Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6, Angew. Chem. Int. Ed., 2015, vol. 54, no. 41, pp. 12069–12073. https://doi.org/10.1002/anie.201506456

    Article  CAS  Google Scholar 

  4. Sahnoun, O., Bouhani-Benziane, H., Sahnoun, M., and Driz, M., Magnetic and thermoelectric properties of ordered double perovskite Ba2FeMoO6, J. Alloys Compd., 2017, vol. 714, pp. 704–708. https://doi.org/10.1016/j.jallcom.2017.04.180

    Article  CAS  Google Scholar 

  5. Aguirre, M.H., Logvinovich, D., Bocher, L., Robert, R., Ebbinghaus, S.G., and Weidenkaff, A., High-temperature thermoelectric properties of Sr2RuYO6 and Sr2-RuErO6 double perovskites influenced by structure and microstructure, Acta Mater., 2009, vol. 57, no. 1, pp. 108–115. https://doi.org/10.1016/j.actamat.2008.09.003

    Article  CAS  Google Scholar 

  6. Sri Gyan, D., Dwivedi, A., Roy, P., and Maiti, T., Synthesis and thermoelectric properties of Ba2TiFeO6 double perovskite with insight into the crystal structure, Ferroelectrics, 2018, vol. 536, no. 1, pp. 146–155. https://doi.org/10.1080/00150193.2018.1528922

    Article  CAS  Google Scholar 

  7. Murugesan, G., Nithya, R., and Kalainathan, S., Colossal dielectric behaviour of Sr2TiMnO6 – δ single crystals, J. Cryst. Growth, 2020, vol. 530, art. ID 125179. https://doi.org/10.1016/j.jcrysgro.2019.125179

  8. Gorodea, I., Goanta, M., and Toma, M., Impact of A cation size of double perovskite A2AlTaO6 (A = Ca, Sr, Ba) on dielectric and catalytic properties, J. Alloys Compd., 2015, vol. 632, nos. 1–2, pp. 805–809. https://doi.org/10.1016/j.jallcom.2015.01.310

  9. Feraru, S., Samoila, P., Borhan, A.I., Ignat, M., Iordan, A.R., and Palamaru, M.N., Synthesis, characterization of double perovskite Ca2MSbO6 (M = Dy, Fe, Cr, Al) materials via sol–gel auto-combustion and their catalytic properties, Mater. Charact., 2013, vol. 84, pp. 112–119. https://doi.org/10.1016/j.matchar.2013.07.005

    Article  CAS  Google Scholar 

  10. Huang, Y.-H., Liang, G., Croft, M., Lehtimaki, M., Karppinen, M., and Goodenough, J.B., Double-perovskite anode materials Sr2MMoO6 (M = Co, Ni) for solid oxide fuel cells, Chem. Mater., 2009, vol. 21, no. 10, pp. 2319–2326. https://doi.org/10.1021/cm8033643

    Article  CAS  Google Scholar 

  11. Rath, M.K. and Lee, K.-T., Characterization of novel Ba2LnMoO6 (Ln = Pr and Nd) double perovskite as the anode material for hydrocarbon-fueled solid oxide fuel cells, J. Alloys Compd., 2018, vol. 737, pp. 152–159. https://doi.org/10.1016/j.jallcom.2017.12.090

    Article  CAS  Google Scholar 

  12. Ravi, S., Multiferroism in Pr2FeCrO6 perovskite, J. Rare Earths, 2018, vol. 36, no. 11, pp. 1175–1178. https://doi.org/10.1016/j.jre.2018.03.023

    Article  CAS  Google Scholar 

  13. Gou, G., Charles, N., Shi, J., and Rondinelli, J.M., A‑site ordered double perovskite CaMnTi2O6 as a multifunctional piezoelectric and ferroelectric–photovoltaic material, Inorg. Chem., 2017, vol. 56, no. 19, pp. 11854–11861. https://doi.org/10.1021/acs.inorgchem.7b01854

    Article  CAS  PubMed  Google Scholar 

  14. Anderson, M.T., Greenwood, K.B., Taylor, G.A., and Poeppelmeier, K.R., B-cation arrangements in double perovskites, Prog. Solid State Chem., 1993, vol. 22, no. 3, pp. 197–233. https://doi.org/10.1016/0079-6786(93)90004-B

    Article  CAS  Google Scholar 

  15. Glazer, A.M., The classification of tilted octahedral in perovskites, Acta Crystallogr., Sect. B, 1972, vol. 28, no. 11, pp. 3384–3392. https://doi.org/10.1107/S0567740872007976

    Article  CAS  Google Scholar 

  16. Howard, C.J. and Stokes, H.T., Group-theoretical analysis of octahedral tilting in perovskites, Acta Crystallogr., Sect. B, 1998, vol. 54, no. 6, pp. 782–789. https://doi.org/10.1107/S0108768198004200

    Article  Google Scholar 

  17. Lufaso, M.W. and Woodward, P.M., Prediction of the crystal structures of perovskites using the software program SPuDS, Acta Crystallogr., Sect. B, 2001, vol. 57, no. 6, pp. 725–738. https://doi.org/10.1107/S0108768101015282

    Article  CAS  PubMed  Google Scholar 

  18. Lufaso, M.W., Barnes, P.W., and Woodward, P.M., Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS, Acta Crystallogr., Sect. B, 2006, vol. 62, no. 3, pp. 397–410. https://doi.org/10.1107/S010876810600262X

    Article  CAS  PubMed  Google Scholar 

  19. Askerka, M., Li, Z., Lempen, M., Liu, Y., Johnston, A., Saidaminov, M.I., Zajacz, Z., and Sargent, E.H., Learning-in-templates enables accelerated discovery and synthesis of new stable double-perovskites, J. Am. Chem. Soc., 2019, vol. 141, no. 8, pp. 3682–3690. https://doi.org/10.1021/jacs.8b13420

    Article  CAS  PubMed  Google Scholar 

  20. Dimitrovska, S., Aleksovska, S., and Kuzmanovski, I., Prediction of the unit cell edge length of cubic \({\text{A}}_{2}^{{2 + }}\)BB′O6 perovskites by multiple linear regression and artificial neural networks, Cent. Eur. J. Chem., 2005, vol. 3, no. 1, pp. 198–215.

    Google Scholar 

  21. Li, W., Jacobs, R., and Morgan, D., Predicting the thermodynamic stability of perovskite oxides using machine learning models, Comput. Mater. Sci., 2018, vol. 150, pp. 454–463. https://doi.org/10.1016/j.commatsci.2018.04.033

  22. Majid, A., Khan, A., and Choi, T.-S., Predicting lattice constant of complex cubic perovskites using computational intelligence, Comput. Mater. Sci., 2011, vol. 50, no. 6, pp. 1879–1888. https://doi.org/10.1016/j.commatsci.2011.01.035

    Article  CAS  Google Scholar 

  23. Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B.P., Ramprasad, R., Gubernatis, J.E., and Lookman, T., Machine learning bandgaps of double perovskites, Sci. Rep., 2016, vol. 6, art. ID 19375. https://doi.org/10.1038/srep19375

  24. Xie, S.R., Kotlarz, P., Hennig, R.G., and Nino, J.C., Machine learning of octahedral tilting in oxide perovskites by symbolic classification with compressed sensing, Comput. Mater. Sci., 2020, vol. 180, art. ID 109690. https://doi.org/10.1016/j.commatsci.2020.109690

  25. Xu, Q., Li, Z., Liu, M., and Yin, W.-J., Rationalizing perovskites data for machine learning and materials design, J. Phys. Chem. Lett., 2018, vol. 9, no. 24, pp. 6948–6954. https://doi.org/10.1021/acs.jpclett.8b03232

    Article  CAS  PubMed  Google Scholar 

  26. Kiselyova, N.N., Pokrovskii, B.I., Komissarova, L.N., and Vashchenko, N.D., Simulation of the complicated oxides formation from initial components based on the cybernetic method of concept formation, Zh. Neorg. Khim., 1977, vol. 22, no. 4, pp. 883–886.

    Google Scholar 

  27. Kiselyova, N.N., Komp’yuternoe konstruirovanie neorganicheskikh soedinenii. Ispol’zovanie baz dannykh i metodov iskusstvennogo intellekta (Computer-Assisted Design of Inorganic Compounds: Application of Databases and Artificial Intelligence Methods), Moscow: Nauka, 2005.

  28. Zhuravlev, Yu.I., Ryazanov, V.V., and Sen’ko, O.V., Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya (Recognition. Mathematical Methods. Software System. Practical Applications), Moscow: FAZIS, 2006.

  29. Kiselyova, N.N., Stolyarenko, A.V., Ryazanov, V.V., Sen’ko, O.V., Dokukin, A.A., and Podbel’skii, V.V., A system for computer-assisted design of inorganic compounds based on computer training, Pattern Recognit. Image Anal., 2011, vol. 21, no. 1, pp. 88–94. https://doi.org/10.1134/S1054661811010081

    Article  Google Scholar 

  30. Zhuravlev, Yu.I., Kiselyova, N.N., Ryazanov, V.V., Sen’ko, O.V., and Dokukin, A.A., Design of inorganic compounds with the use of precedent-based pattern recognition methods, Pattern Recognit. Image Anal., 2011, vol. 21, no. 1, pp. 95–103. https://doi.org/10.1134/S1054661811010135

    Article  Google Scholar 

  31. Kiselyova, N.N., Dudarev, V.A., Ryazanov, V.V., Sen’ko, O.V., and Dokukin, A.A., Predictions of chalcospinels with composition ABCX4 (X–S or Se), Inorg. Mater.: Appl. Res., 2021, vol. 12, no. 2, pp. 328–336, https://doi.org/10.1134/S2075113321020246

    Article  Google Scholar 

  32. Wong, N.W., Kaduk, J.A., Luong, M., and Huang, Q., X-ray diffraction study and powder patterns of double-perovskites Sr2RSbO6 (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu), Powder Diffr., 2014, vol. 29, no. 4, pp. 371–378. https://doi.org/10.1017/S0885715614000566

    Article  CAS  Google Scholar 

  33. Lavat, A.E. and Baran, E.J., Structural and IR-spectroscopic characterization of some new Sr2LnSbO6 perovskites, J. Alloys Compd., 2008, vol. 460, nos. 1–2, pp. 152–154. https://doi.org/10.1016/j.jallcom.2007.06.003

  34. Evdokimov, A.A. and Men’shenina, N.F., Unit cell parameters of Ba2REO6, E = Nb, Ta, Zh. Neorg. Khim., 1982, vol. 27, no. 8, pp. 2137–2139.

    CAS  Google Scholar 

  35. Saines, P.J., Kennedy, B.J., and Elcombe, M.M., Structural phase transitions and crystal chemistry of the series Ba2LnB′O6 (Ln = lanthanide and B′ = Nb5+ or Sb5+), J. Solid State Chem., 2007, vol. 180, no. 2, pp. 401–409. https://doi.org/10.1016/j.jssc.2006.10.017

    Article  CAS  Google Scholar 

  36. Henmi, K., Hinatsu, Y., and Masaki, N.M., Crystal structures and magnetic properties of ordered perovskites Ba2LnNbO6 (Ln = lanthanide elements), J. Solid State Chem.,1999, vol. 148, no. 2, pp. 353–360. https://doi.org/10.1006/jssc.1999.8460

    Article  CAS  Google Scholar 

  37. Fu, W.T. and Ijdo, D.J.W., New insight into the symmetry and the structure of the double perovskites Ba2LnNbO6 (Ln = lanthanides and Y), J. Solid State Chem., 2006, vol. 179, no. 4, pp. 1022–1028. https://doi.org/10.1016/j.jssc.2005.12.031

    Article  CAS  Google Scholar 

  38. Ozherel’ev, I.S., Sen’ko, O.V., and Kiselyova, N.N., Method for searching outlier objects using parameters of learning instability, Sist. Sredstva Inform., 2019, vol. 29, no. 2, pp. 122–134. https://doi.org/10.14357/08696527190211

    Article  Google Scholar 

  39. Dineev, V.D. and Dudarev, V.A., Extendable system for multicriterial outlier detection, CEUR Workshop Proc. (CEUR-WS.org), Suppl. Proc. 22nd Int. Conf. on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020), 2020, vol. 2790, pp. 103–113. http://ceur-ws.org/Vol-2790/paper10.pdf

  40. Senko, O.V., An optimal ensemble of predictors in convex correcting procedures, Pattern Recognit. Image Anal., 2009, vol. 19, no. 3, pp. 465–468. https://doi.org/10.1134/S1054661809030110

    Article  Google Scholar 

  41. Dudarev, V.A., Kiselyova, N.N., Stolyarenko, A.V., Dokukin, A.A., Senko, O.V., Ryazanov, V.V., Vashchenko, E.A., Vitushko, M.A., and Pereverzev-Orlov, V.S., An information system for inorganic substances physical properties prediction based on machine learning methods, CEUR Workshop Proc. (CEUR-WS.org), Suppl. Proc. 22nd Int. Conf. on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020), 2020, vol. 2790, pp. 89–102. http://ceur-ws.org/Vol-2790/paper09.pdf

  42. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al., Scikitlearn: Machine learning in python, J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–2830.

    Google Scholar 

Download references

Funding

This work was performed under partial financial support from the Russian Foundation for Basic Research, projects 20-01-00609 and 18-07-00080, and according to the State Order no. 075-00328-21-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Kiselyova, V. A. Dudarev, A. V. Stolyarenko, A. A. Dokukin, O. V. Sen’ko, V. V. Ryazanov, M. A. Vitushko, V. S. Pereverzev-Orlov or E. A. Vaschenko.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselyova, N.N., Dudarev, V.A., Stolyarenko, A.V. et al. Prediction of Space Groups for Perovskite-Like \({\text{A}}_{{\text{2}}}^{{{\text{II}}}}\)BIIIB'VO6 Compounds. Inorg. Mater. Appl. Res. 13, 277–293 (2022). https://doi.org/10.1134/S2075113322020228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322020228

Keywords:

Navigation