Skip to main content
Log in

Component Selection and Nano-Structuring of WS2/MoS2/a-C Thin-Film Coatings for Reduction of Sliding Friction in Difficult Conditions

  • GENERAL PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The possibility of forming new solid-lubricating thin-film coatings consisting of nanosized layers of WS2, MoS2, and amorphous carbon (a-C) with improved antifriction properties is studied. To control the tribological properties of coatings, the conditions for obtaining layers of 2H-WS2 and 2H-MoS2 with a thickness of 5–20 nm with a crystalline laminar structure with a basal orientation to the substrate are determined. Nanolayers are created by reactionary pulsed laser deposition from metal and metal oxide targets in hydrogen sulfide at elevated temperatures. It is shown that, when alternating the deposition processes of the selected materials, no noticeable solid-phase reactions are observed at the interfaces. Tribological tests were carried out at room temperature using the method of sliding a steel ball over a coated disk without lubrication in an atmosphere enriched in nitrogen (relative humidity of ~9%). The structural state of the coatings before and after tribological testing is studied using Raman scattering of light. The lowest friction coefficient of ~0.015 is found for WS2 coatings deposited at 500°C. The tribological properties of the MoS2 coatings turn out to be much worse. The coating consisting of WS2 and carbon nanolayers has a slightly higher friction coefficient (0.021), but it has the best wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Gong, Z., Jia, X., Ma, W., Zhang, B., and Zhang, J., Hierarchical structure graphitic-like/MoS2 film as superlubricity material, Appl. Surf. Sci., 2017, vol. 413, pp. 381–386. https://doi.org/10.1016/j.apsusc.2017.04.057

    Article  CAS  Google Scholar 

  2. Fominski, V., Demin, M., Nevolin, V., Fominski, D., Romanov, R., Gritskevich, M., and Smirnov, N., Reactive pulsed laser deposition of clustered-type MoSx (x ~ 2, 3, and 4) films and their solid lubricant properties at low temperature, Nanomaterials, 2020, vol. 10, no. 4, p. 653. https://doi.org/10.3390/nano10040653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tian, J., Jin, J., Zhang, C., Xu, J., Qi, W., Yu, Q., Deng, W., Wang, Y., Li, X., Chen, X., and Ma, L., Shear-induced interfacial reconfiguration governing superlubricity of MoS2-Ag film enabled by diamond-like carbon, Appl. Surf. Sci., 2022, vol. 578, p. 152068. https://doi.org/10.1016/j.apsusc.2021.152068

  4. Berman, D., Narayanan, B., Cherukara, M., Sankaranarayanan, S., Erdemir, A., Zinovev, A., and Sumant, A., Operando tribochemical formation of onion-like carbon leads to macroscale superlubricity, Nat. Commun., 2018, vol. 9, no. 1, p. 1164. https://doi.org/10.1038/s41467-018-03549-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang, B., Zhao, Z., Gong, Z., Wang, D., Yu, G., and Zhang, J., Superlubricity of metal-metal interface enabled by graphene and MoWS4 nanosheets, Appl. Surf. Sci., 2020, vol. 520, p. 146303. https://doi.org/10.1016/j.apsusc.2020.146303

  6. Cao, H., Momand, J., Syari’ati, A., Wen, F., Rudolf, P., Xiao, P., De Hosson, J., and Pei, Y., Temperature-adaptive ultralubricity of a WS2/a-C nanocomposite coating: Performance from room temperature up to 500°C, ACS Appl. Mater. Interfaces, 2021, vol. 13, pp. 28843–28854. https://doi.org/10.1021/acsami.1c06061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao, H., De Hosson, J., and Pei, Y., Effect of carbon concentration and argon flow rate on the microstructure and triboperformance of magnetron sputtered WS2/a-C coatings, Surf. Coat. Technol., 2017, vol. 332, pp. 142–152. https://doi.org/10.1016/j.surfcoat.2017.06.087

    Article  CAS  Google Scholar 

  8. Goikhman, A., Fominski, D., Gritskevich, M., Romanov, R., Fominski, V., and Smirnov, N., Features of pulsed laser ablation of MoS2 and MoSe2 targets and their influence on the tribological properties of the deposited low friction films, J. Phys.: Conf. Ser., 2020, vol. 1686, p. 012044. https://doi.org/10.1088/1742-6596/1686/1/012044

  9. Fominskii, V.Yu, Grigoriev, S.N., Gnedovets, A.G., and Romanov, R.I., Specific features of ion-initiated processes during pulsed laser deposition of MoSe2 coatings in pulsed electric fields, Tech. Phys. Lett., 2012, vol. 38, no. 7, pp. 683–686. https://doi.org/10.1134/S1063785012070176

    Article  CAS  Google Scholar 

  10. Fominski, V., Fominski, D., Romanov, R., Gritskevich, M., Demin, M., Shvets, P., Maksimova, K., and Goikhman, A., Specific features of reactive pulsed laser deposition of solid lubricating nanocomposite Mo–S–C–H thin-film coatings, Nanomaterials, 2020, vol. 10, no. 12, p. 2456. https://doi.org/10.3390/nano10122456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duan, Z., Qiao, L., Chai, L., Xu, J., Wang, P., and Liu, W., Structure, properties and growth mechanism of a selfassembled nanocylindrical MoS2/Mo–S–C composite film, Appl. Surf. Sci., 2019, vol. 465, pp. 564–574. https://doi.org/10.1016/j.apsusc.2018.09.076

    Article  CAS  Google Scholar 

  12. Noshiro, J., Watanabe, S., Sakurai, T., and Miyake, S., Friction properties of co-sputtered sulfide/DLC solid lubricating films, Surf. Coat. Technol., 2006, vol. 200, pp. 5849–5854. https://doi.org/10.1016/j.surfcoat.2005.08.147

    Article  CAS  Google Scholar 

  13. Li, H., Yi, P., Zhang, D., Peng, L., Zhang, Z., and Pu, J., Integration of MoST and Graphit-iC coatings for the enhancement of tribological and corrosive properties, Appl. Surf. Sci., 2020, vol. 506, p. 144961.https://doi.org/10.1016/japsusc.2019.144961

  14. Walck, S.D., Zabinski, J.S., Donley, M.S., and Bultman, J.E., Evolution of surface topography in pulsed-laser-deposited thin films of MoS2, Surf. Coat. Technol., 1993, vol. 62, pp. 412–416. https://doi.org/10.1016/0257-8972(93)90276-T

    Article  CAS  Google Scholar 

  15. Fominski, V.Yu., Grigoriev, S.N., Gnedovets, A.G., and Romanov, R.I., On the mechanism of encapsulated particle formation during pulsed laser deposition of WSex thin-film coatings, Tech. Phys. Lett., 2013, vol. 39, no. 3, pp. 312–315. https://doi.org/10.1134/S1063785013030206

    Article  CAS  Google Scholar 

  16. Nevolin, V.N., Fominski, D.V., Romanov, R.I., Rubinkovskaya, O.V., Soloviev, A.A., Shvets, P.V., Maznitsyna, E.A., and Fominski, V.Yu., Influence of sulfidation conditions of WO3 nanocrystalline film on photoelectrocatalytic activity of WS2/WO3 hybrid structure in production of hydrogen, Inorg. Mater.: Appl. Res., 2021, vol. 11, no. 5, pp. 1139–1147. https://doi.org/10.1134/S2075113321050270

    Article  Google Scholar 

  17. Berkdemir, A., Gutierrez, H., Botello-Mendez, A., Perea-Lopez, N., Elias, A., Chia, C.-I., Wang, B., Crespi, V., Lopez-Urias, F., Charlier, J.-C., Terrones, H., and Terrones, M., Identification of individual and few layers of WS2 using Raman spectroscopy, Sci. Rep., 2013, vol. 3, no. 1, p. 1755. https://doi.org/10.1038/srep01755

    Article  CAS  PubMed Central  Google Scholar 

  18. Ferrari, A. and Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon, Phys Rev. B, 2000, vol. 61, no. 20, pp. 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  19. Gao, X., Fu, Y., Jiang, D., Wang, D., Xu, S., Liu, W., Weng, L., Yang, J., Sun, J., and Hu, M., Constructing WS2/MoS2 nano-scale multilayer film and understanding its positive response to space environment, Surf. Coat. Technol., 2018, vol. 353, pp. 8–17. https://doi.org/10.1016/j.surfcoat.2018.08.072

    Article  CAS  Google Scholar 

  20. Xu, S., Liu, Y., Gao, M., Kang, K.-H., Shin, D.-G., and Kim, D.-E., Superior lubrication of dense/porous-coupled nanoscale C/WS2 multilayer coating on ductile substrate, Appl. Surf. Sci., 2019, vol. 476, pp. 724–732. https://doi.org/10.1016/j.apsusc.2019.01.170

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 22-29-00197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Romanov.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, R.I., Fominski, D.V., Nevolin, V.N. et al. Component Selection and Nano-Structuring of WS2/MoS2/a-C Thin-Film Coatings for Reduction of Sliding Friction in Difficult Conditions. Inorg. Mater. Appl. Res. 14, 445–453 (2023). https://doi.org/10.1134/S2075113323020399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323020399

Keywords:

Navigation