Skip to main content
Log in

Adaptation to intermittent hypoxia-hyperoxia improves cognitive performance and exercise tolerance in the elderly

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

To maintain physical performance and cognitive functions in the elderly, multimodal training programs (MTP) are used, which are based on physical training, physiotherapy procedures, psychological training, etc. To increase the efficiency of MTP in the elderly, it is suggested to apply a new variant of adaptation to interval normobaric hypoxia, interval hypoxic-hyperoxic training (IHHT). A placebo-controlled clinical trial included 34 patients aged 64–92 years of the day geriatric hospital of the Klagenfurt Clinic (Carinthia, Austria) who were randomized into two groups: experimental (EG), those who received MTP and IHHT, and control (CG), those who passed the course of MTP during the simulation of IHHT procedures. Before and after the rehabilitation course, cognitive functions and exercise endurance of the patients were evaluated using the dementia detection test DemTect, the clock-drawing test, and a 6-minute walk test (6MWT). During the course of IHHT, cognitive capabilities of EG patients significantly improved in comparison with CG patients: the increase in values in the dementia test was +16.7% (in CG +0.39%, p < 0.001), and that in the clock-drawing test was +10.7% (in CG–8%, p = 0.031). The distance covered in the 6-minute test increased in both the groups but significantly more in OG, 24.1% (in CG +10.8%, p = 0.021). Direct significant correlations between increment in exercise tolerance and cognitive tests were revealed. Thus, the inclusion of procedures for adaptation to interval hypoxia-hyperoxia in MTP in the elderly leads to a significant increase in their effectiveness, which is manifested in the improvement of cognitive functions and physical endurance. IHHT procedures are well tolerated and do not cause side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bashkireva, A.S., Vylegzhanin, S.V., and Kachan, E.Yu., Present urgent problems of social gerontology in Russia, Usp. Gerontol., 2016, vol. 29, no. 2, pp. 379–386.

    CAS  Google Scholar 

  2. Gerasimenko, E.N., Meshchaninov, V.N., Zvezdina, E.M., Katireva, U.E., Tkachenko, E.L., and Gavrilov, I.V., Comparative analysis of geroprophylactic efficiency and membranotropic action of various gas therapies, Adv. Gerontol., 2015, vol. 5, no. 1, pp. 12–17.

    Article  Google Scholar 

  3. Zagainaya, E.E., Kopylov, F.Yu., Glazachev, O.S., et al., Influence of interval hypoxic-hyperoxic trainings on the tolerance of physical exercises in patients with stable stenocardia of II–III functional class on the background of optimal drug therapy, Kardiol. Serdechno-Sosudistaya Khir., 2015, no. 3, pp. 32–38.

    Google Scholar 

  4. Zakharov, V.V. and Yakhno, N.N., Syndrome of moderate cognitive impairment in elderly age: diagnostics and therapy, Russ. Med. Zh., 2004, vol. 12, no. 10, pp. 573–576.

    Google Scholar 

  5. Sazontova, T.G., Bolotova, A.V., Glazachev, O.S., et al., Adaptation to hypoxia and hyperoxia increases physical endurance: the role of active species of oxygen and redox signaling (experimental and practical study), Ross. Fiziol. Zh. im. I.M. Sechenova, 2012, vol. 98, no. 6, pp. 793–807.

    CAS  PubMed  Google Scholar 

  6. Baker, L.D., Frank, L.L., Foster-Schubert, K., et al., Effects of aerobic exercise on mild cognitive impairment: a controlled trial, Arch. Neurol., 2010, vol. 67, no. 1, pp. 71–79. doi 10/1001/archneurol2009.307

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barnes, D.E., Santos-Modesitt, W., Poelke, G., et al., The mental activity and exercise (MAX) trial. A randomized controlled trial to enhance cognitive function in older adults, J.A.M.A. Int. Med., 2013, vol. 173, no. 9, pp. 797–804. doi 10.1001/jamainternmed.2013.189

    Google Scholar 

  8. Brinke, L.F., Bolandzadeh, N., and Nagamatsu, L.S., Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial, Br. J. Sports Med., 2015, vol. 49, no. 4, pp. 248–54. doi 10.1136/bjsports-2013-093184

    Article  PubMed  Google Scholar 

  9. Burtscher, M., Haider, T., Domej, W., et al., Intermittent hypoxia increases exercise tolerance in patients at risk or with mild COPD, Respir. Physiol. Neurobiol., 2009, vol. 165, pp. 97–103. doi 10.1016/j.resp.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  10. Burtscher, M., Pachinger, O., Ehrenbourg, I., et al., Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease, Int. J. Cardiol., 2004, vol. 96, pp. 247–254.

    Article  PubMed  Google Scholar 

  11. Colcombe, S. and Kramer, A.F., Fitness effects on the cognitive function of older adults: a meta-analytic study, Psychol. Sci., 2003, vol. 14, no. 2, pp. 125–130.

    Article  PubMed  Google Scholar 

  12. Folstein, M.F., Folstein, S.E., and McHugh, P.R., Mini mental state. A practical method for grading the cognitive state of patients for the clinician, J. Psychiatr. Res., 1975, vol. 12, no. 3, pp. 189–198. doi 10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  13. Glazachev, O., Optimization of clinical application of interval hypoxic training, Biomed. Eng., 2013, vol. 47, no. 3, pp. 134–137.

    Article  Google Scholar 

  14. Huang, E.J. and Reichardt, L.F., Neurotrophins: roles in neuronal development and function, Ann. Rev. Neurosci., 2001, vol. 24, pp. 677–736. doi 10.1146/annurev.neuro.24.1.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hurd, M.D., Martorell, P., Delavande, A., et al., Monetary costs of dementia in the United States, N. Engl. J. Med., 2013, vol. 368, no. 4, pp. 1326–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalbe, E., Kessler, J., Calabrese, P., et al., DemTect: a new, sensitive cognitive screening test to support the diagnosis of mild cognitive impairment and early dementia, Int. J. Geriatr. Psychiatry, 2004, vol. 19, no. 2, pp. 136–143. doi 10.1002/gps.1042

    Article  CAS  PubMed  Google Scholar 

  17. Langlois, F., Minh, K., Vu, T.T., et al., Benefits of physical exercise training on cognition and quality of life in frail older adults, J. Gerontol. Psychol. Sci. Soc., 2013, vol. 68, no. 3, pp. 400–404. doi 10.1093/geronb/gbs069

    Article  Google Scholar 

  18. Manukhina, E., Downey, F., Shi, X., and Mallet, R., Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease, Exp. Biol. Med., 2016, vol. 241, pp. 1351–1363. doi 10.1177/1535370216649060

    Article  CAS  Google Scholar 

  19. Navarrete-Opazo, A. and Mitchell, G.S., Therapeutic potential of intermittent hypoxia: a matter of dose, Am. J. Physiol.-Regul., Integr. Comp. Physiol., 2014, vol. 307, pp. 1181–1197.

    Article  Google Scholar 

  20. Neubauer, J.A., Physiological and pathophysiological responses to intermittent hypoxia, J. Appl. Physiol., 2001, vol. 90, no. 4, pp. 1593–1599.

    CAS  PubMed  Google Scholar 

  21. Ngandu, T., Lehtisalo, J., Solomon, A., et al., A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomized controlled trial, Lancet, 2015, vol. 385, no. 9984, pp. 2255–2263. doi 10.1016/S0140-6736(15)60461-5

    Article  PubMed  Google Scholar 

  22. Prokopov, A., A case of recovery from dementia following rejuvenative treatment, Rejuvenation Res., 2010, vol. 13, nos. 2–3, pp. 217–219.

    Article  PubMed  Google Scholar 

  23. Rabinovicia, G.D., Carrillob, M.C., Formanc, M., DeSantid, S., Millere, D.S., Kozauerf, N., Peterseng, R.C., Randolphh, C., Knopmang, D.S., Smithj, E.E., Isaack, M., Mattssonl, N., Bainn, L.J., Hendrixb, J.A., and Simso, J.R., Multiple comorbid neuropathologies in the setting of Alzheimer’s disease neuropathology and implications for drug development, Alzheimer’s Dementia: Transl. Res. Clin. Interventions, 2016, vol. 3, no. 1, pp. 83–91. doi 10.1016/j.trci.2016.09.002

    Google Scholar 

  24. Sunderland, T., Hill, J.L., Mellow, A.M., et al., Clock drawing in Alzheimer’s disease: a novel measure of dementia severity, J. Am. Geriatr. Soc., 1989, vol. 37, pp. 725–729.

    Article  CAS  PubMed  Google Scholar 

  25. Satriotomo, I., Vinit, S., and Flom, A.L., Repetitive acute intermittent hypoxia increases BDNF and TrkB expression in respiratory motor neurons: dose effects, FASEB J., 2010. http://www.fasebj.org/cgi/content/ meeting_abstract/24/1_MeetingAbstracts/799.16.

    Google Scholar 

  26. Schega, L., Peter, B., Törpel, A., et al., Effects of intermittent hypoxia on cognitive performance and quality of life in elderly adults: a pilot study, Gerontology, 2013, vol. 59, pp. 316–323. doi 10.1159/000350927

    Article  PubMed  Google Scholar 

  27. Serebrovskaya, T.V., Manukhina, E.B., Smith, M.L., et al., Intermittent hypoxia: cause of or therapy for systemic hypertension?, Exp. Biol. Med., 2008, vol. 233, pp. 627–650.

    Article  CAS  Google Scholar 

  28. Susta, D., Dudnik, E., and Glazachev, O.S., A program based on repeated hypoxia–hyperoxia exposure and light exercise enhances performance in athletes with overtraining syndrome: a pilot study, Clin. Physiol. Funct. Imaging, 2017, vol. 37, no. 3, pp. 276–281. doi 10.1111/cpf.12296

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki, T., Shimada, H., Makizako, H., et al., Effects of a multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: a randomized trial, BMC Neurol., 2012, vol. 12, p. 128. doi 10.1186/1471-2377-12-128

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhu, X.H., Yan, H.C., Zhang, J., et al., Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats, J. Neurosci., 2010, vol. 30, no. 8, pp. 12653–12663. doi 10.1523/JNEUROSCI.6414-09.2010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Glazachev.

Additional information

Original Russian Text © U. Bayer, O.S. Glazachev, R. Likar, M. Burtscher, W. Kofler, G. Pinter, H. Stettner, S. Demschar, B. Trummer, S. Neuwersch, 2017, published in Uspekhi Gerontologii, 2017, Vol. 30, No. 2, pp. 255–261.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, U., Glazachev, O.S., Likar, R. et al. Adaptation to intermittent hypoxia-hyperoxia improves cognitive performance and exercise tolerance in the elderly. Adv Gerontol 7, 214–220 (2017). https://doi.org/10.1134/S2079057017030031

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057017030031

Keywords

Navigation