Skip to main content
Log in

Interrelation of MicroRNAs and Transposons in Aging and Carcinogenesis

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The dysregulation of transposable elements plays a key role in human carcinogenesis. Physiological aging in humans is also caused by the deregulation of transposons. Moreover, aging is associated with the development of cancer. We present the results of an analysis of data on the presence of common epigenetic changes during aging and carcinogenesis, associated with changes in the expression of microRNAs derived from transposons. We find that aging is characterized by changes in the expression of 21 specific transposon-derived microRNAs associated with the development of malignant neoplasms. Before us, evidence similar to ours on the relationship between the mechanisms of aging and carcinogenesis at the epigenetic level has not been presented. We hypothesize that one of the key mechanisms of aging is an imbalance in the programmed activation of mobile genetic elements, which is reflected in changes in the body’s epigenetic regulation and leads to an increased risk of cancer. Since microRNA precursors can be translated with the formation of functional molecules, peptides used in gerontology can be considered as potential anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mustafin, R.N. and Khusnutdinova, E.K., The role of interactions between transposons and epigenetic factors in aging, Adv. Gerontol., 2017, no. 4, pp. 516–528.

  2. Khavinson, V.Kh., Kuznik B.I., and Ryzhak, G.A., Peptide bioregulators: The new class of geroprotectors. Communication 1. Results of experimental studies, Usp. Gerontol., 2012, vol. 25, no. 4, pp. 696–708.

    Google Scholar 

  3. Khavinson, V.Kh., Therapeutic peptides: Past, present, future, Klin. Med., 2020, vol. 98, no. 3, pp. 165–177.

    Article  Google Scholar 

  4. Andrenacci, D., Cavaliere, V., and Lattanzi, G., The role of transposable elements activity in aging and their possible involvement in laminopathic diseases, Ageing Res. Rev., 2020, vol. 57, p. 1000995.

    Article  Google Scholar 

  5. Ahwazi, R.P., Kiani, M., Dinarvand, M., et al., Immobilization of HIV-1 Tat peptide on gold nanoparticles: A feasible approach for siRNA delivery, J. Cell Physiol., 2020, vol. 235, pp. 2049–2059.

    Article  CAS  Google Scholar 

  6. Anwar, S.L., Wulaningsih, W., and Lehmann, U., Transposable elements in human cancer: Causes and consequences of deregulation, Int. J. Mol. Sci., 2017, vol. 18. Е974.

  7. Attermann, A.S., Bjerregaard, A.M., Saini, S.K., et al., Human endogenous retroviruses and their implication for immunotherapeutics of cancer, Ann. Oncol., 2018, vol. 29, pp. 2183–2191.

    Article  CAS  Google Scholar 

  8. Autio, A., Nevalainen, T., Mishra, B.H., et al., Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22, Immunol. Ageing, 2020, vol. 17, p. 11.

    Article  CAS  Google Scholar 

  9. Baker, J.R., Vuppusetty, C., Colley, T., et al., MicroRNA-570 is a novel regulator of cellular senescence and inflammaging, FASEB J., 2019, vol. 33, pp. 1605–1616.

    Article  CAS  Google Scholar 

  10. Behbahanipour, M., Peymani, M., Salari, M., et al., Expression profiling of blood microRNAs 885, 361, and 17 in the patients with the Parkinson’s disease: integrating interaction data to uncover the possible triggering age-related mechanisms, Sci. Rep., 2019, vol. 9, p. 13759.

    Article  Google Scholar 

  11. Bermejo, A.V., Ragonnaud, E., Daradoumis, J., and Holst, P., Cancer associated endogenous retroviruses: Ideal immune target for adenovirus-based immunotherapy, Int. J. Mol. Sci., 2020, vol. 21, p. 4843.

    Article  CAS  Google Scholar 

  12. Cardelli, M., The epigenetic alterations of endogenous retroelements in aging, Mech. Ageing Dev., 2018, vol. 174, pp. 30–46.

    Article  CAS  Google Scholar 

  13. Chen, H., Zheng, X., Xiao, D., and Zheng, Y., Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence, Aging Cell, 2016, vol. 15, pp. 542–552.

    Article  CAS  Google Scholar 

  14. Chen, Y.F., Stampley, J.E., Irving, B.A., and Tammy, R.D., Chronic nucleoside reverse transcriptase inhibitors disrupt mitochondrial homeostasis and promote premature endothelial senescence, Toxicol. Sci., 2019, vol. 172, pp. 445–456.

    Article  CAS  Google Scholar 

  15. Cho, J.H., Dimri, M., and Dimri, G.P., MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence, J. Biol. Chem., 2015, vol. 290, pp. 10555–10567.

    Article  CAS  Google Scholar 

  16. Couzigou, J.M., Andre, O., Guillotin, B., et al., Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean, New Phytol., 2016, vol. 211, pp. 379–381.

    Article  CAS  Google Scholar 

  17. Dahiya, N., Sarachana, T., Kulkarni S. et al., MiR-570 interacts with mitochondrial ATPase subunit g(ATP5L) encoding mRNA in stored platelets, Platelets, 2017, vol. 28, pp. 74–81.

    Article  CAS  Google Scholar 

  18. De Cecco, M., Criscione, S.W., Peckham, E.J., et al., Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements, Aging Cell, 2013, vol. 12, pp. 247–256.

    Article  CAS  Google Scholar 

  19. De Cecco, M., Ito, T., Petrashen, A.P., et al., L1 drives IFN in senescent cells and promotes age-associated inflammation, Nature, 2019, vol. 566, pp. 73–78.

    Article  CAS  Google Scholar 

  20. Dellago, H., Preschitz-Kammerhofer, B., Terlecki-Zaniewicz, L., et al., High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan, Aging Cell, 2013, vol. 12, pp. 446–458.

    Article  CAS  Google Scholar 

  21. Dluzen, D.F., Kim, Y., Bastian, P., et al., MicroRNAs modulate oxidative stress in hypertension through PARP-1 regulation, Oxid. Med. Cell. Longev., 2017, vol. 2017, p. 3984280.

    Article  Google Scholar 

  22. El Baidouri, M., Kim, K.D., Abernathy, B., et al., A new approach for annotation of transposable elements using small RNA mapping, Nucleic Acids Res., 2015, vol. 43. е84.

  23. Elsner, D., Meusemann, K., and Korb, J., Longevity and transposon defense, the case of termite reproductives, Proc. Nat. Acad. Sci. U.S.A., 2018, vol. 115, pp. 5504–5509.

    Article  CAS  Google Scholar 

  24. Erichsen, L., Beermann, A., Arauzo-Bravo, M.J., et al., Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging, Saudi. J. Biol. Sci., 2018, vol. 25, pp. 1220–1226.

    Article  CAS  Google Scholar 

  25. Fang, J., Morsalin, S., Rao, V.N., and Reddy, E.S.P., Decoding of non-coding DNA and non-coding RNA: Pri-micro RNA-encoded novel peptides regulate migration of cancer cells, J. Pharm. Sci. Pharmacol., 2017, vol. 3, pp. 23–27.

    Article  Google Scholar 

  26. Filshtein, T.J., Mackenzie, C.O., Dale, M.D., et al., Origin-based identification of microRNA targets, Mobile Genet. Elements, 2011, vol. 2, pp. 184–192.

    Article  Google Scholar 

  27. Gregory, P.A., Bert, A.G., Paterson, E.L., et al., The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1, Nat. Cell. Biol., 2008, vol. 10, pp. 593–601.

    Article  CAS  Google Scholar 

  28. Guo, D., Ye, Y., Qi, J., et al., Age and sex differences in microRNAs expression during the process of thymus aging, Acta Biochim. Biophys. Sin. (Shanghai), 2017, vol. 49, рр. 409–419.

  29. Haendeler, J., Hoffmann, J., Diehl, J.F., et al., Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells, Circ. Res., 2004, vol. 94, pp. 768–775.

    Article  CAS  Google Scholar 

  30. Huang, J.Z., Chen, M., Chen, D., et al., A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth, Mol. Cell, 2017, vol. 68, pp. 171–184.

    Article  CAS  Google Scholar 

  31. Ipson, B.R., Fletcher, M.B., Espinoza, S.E., and Fisher, A.L., Identifying exosome-derived microRNAs as candidate biomarkers of frailty, J. Frailty Aging, 2018, vol. 7, pp. 100–103.

    CAS  Google Scholar 

  32. Juliano, C.E., Reich, A., Liu, N., et al., Piwi proteins and Piwi-interacting RNAs function in Hydra somatic stem cells, Proc. Nat. Acad. Sci. U.S.A., 2014, vol. 111, pp. 337–342.

    Article  CAS  Google Scholar 

  33. Kang, M., Tang, B., Li, J., et al., Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA, Mol. Cancer, 2020, vol. 19, p. 143.

    Article  CAS  Google Scholar 

  34. KarakaUlah, G. and Yandim, C., Signature changes in the expressions of protein-coding genes, lncRNAs, and repeat elements in early and late cellular senescence, Turk. J. Biol., 2020, vol. 44, pp. 356–370.

    Article  Google Scholar 

  35. Kurth, J., Krause, B.J., Schwarzenbock, S.M., et al., First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [177Lu]Lu-RM2: A radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer, Europ. J. Nucl. Med. Mol. Imaging, 2020, vol. 47, pp. 123–135.

    Article  CAS  Google Scholar 

  36. Lee, B.P., Buric, I., George-Pandeth, A., et al., MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are associated with median strain lifespan in mice, Sci. Rep., 2017, vol. 7, p. 44620.

    Article  Google Scholar 

  37. Li, X., Song, Y., Liu, D., et al., MiR-495 promotes senescence of mesenchymal stem cells by targeting BMI-1, Cell. Physiol. Biochem., 2017, vol. 42, pp. 780–796.

    Article  CAS  Google Scholar 

  38. Nidadavolu, L.S., Niedernhofer, L.J., and Khan, S.A., Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress, Aging (Albany N.Y.), 2013, vol. 5, рр. 460–473.

  39. Niu, L., Lou, F., Sun, Y., et al., A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation, Sci. Adv., 2020, vol. 6. eaaz2059.

  40. Noren Hooten, N., Fitzpatrick, M., and Wood, W.H., 3rd, et al., Age-related changes in microRNA levels in serum, Aging (Albany N.Y.), 2013, vol. 5, рр. 725–740.

  41. Oyama, Y., Onishi, H., Koga, S., et al., Patched 1-interacting peptide represses fibrosis in pancreatic cancer to augment the effectiveness of immunotherapy, J. Immunother., 2019, vol. 43, pp. 121–133. https://doi.org/10.1097/CJI.0000000000000305

    Article  Google Scholar 

  42. Pal, S. and Tyler, J.K., Epigenetics and aging, Sci. Adv., 2016, vol. 2. e1600584.

  43. Prel, A., Dozier, C., Combier, J.P., et al., Evidence that regulation of pri-miRNA/miRNA expression is not a general rule of miPEPs function in humans, Int. J. Mol. Sci., 2021, vol. 22, p. 3432.

    Article  CAS  Google Scholar 

  44. Qin, S., Jin, P., Zhou, X., et al., The role of transposable elements in the origin and evolution of microRNAs in human, PLoS One, 2015, vol. 10. e0131365.

  45. Raihan, O., Brishti, A., Molla, M.R., et al., The age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain, Neuroscience, 2018, vol. 390, pp. 160–173.

    Article  CAS  Google Scholar 

  46. Roberts, J.T., Cardin, S.E., and Borcehrt, G.M., Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences, Mobile Genet. Elements, 2014, vol. 4. e29255.

    Book  Google Scholar 

  47. Robertson, P.A., Romero, M.A., Osburn, S.C., et al., Skeletal muscle LINE-1 ORF1 mRNA is higher in older humans but decreases with endurance exercise and is negatively associated with higher physical activity, J. Appl. Physiol., 2019, vol. 127, no. 4, pp. 895–904.

  48. Rodriguez-Martin, B., Alvarez, E.G., Baez-Ortega, A., et al., Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition, Nat. Genet., 2020, vol. 52, pp. 306–319.

    Article  CAS  Google Scholar 

  49. Sataranatarajan, K., Feliers, D., Mariappan, M.M., et al., Molecular events in matrix protein metabolism in the aging kidney, Aging Cell, 2012, vol. 11, pp. 1065–1073.

    Article  CAS  Google Scholar 

  50. Schwertz, H. and Rondina, M.T., Do platelets line up for aging? Aging (Albany N.Y.), 2018, vol. 10, рр. 3054–3055.

  51. Seipel, K., Yanze, N., and Schmid, V., The germ line and somatic stem cell gene cniwi in the jellyfish Podocoryne carnea, Int. J. Dev. Biol., 2004, vol. 48, pp. 1–7.

    Article  CAS  Google Scholar 

  52. Shahsavari, S., Shaghaghi, Z., Abedi, S.M., and Hosseinimehr, S.J., Evaluation of 99mTc-HYNIC-(Ser)3-LTWPWY peptide for glioblastoma tumor imaging, Int. J. Radiat. Biol., 2019, vol. 12, pp. 1–23. https://doi.org/10.1080/09553002.2020.1704906

    Google Scholar 

  53. Shi, X., Shi, C., Ye, W., et al., Targeted fluorescence imaging and biological effects of peptide conjugated quantum dots on pancreatic cancer cells, J. Nanosci. Nanotchnol., 2020, vol. 20, pp. 1351–1357.

    Article  CAS  Google Scholar 

  54. Simon, M., Meter, M.V., Ablaeva, J., et al., LINE1 derepression in aged wild-type and SIRT6-deficient mice derives inflammation, Cell Metab., 2019, vol. 29, pp. 871–885.

    Article  CAS  Google Scholar 

  55. Smith-Vikos, T., Liu, Z., Parsons, C., et al., A serum miRNA profile of human longevity: Findings from the Baltimore Longitudinal Study of Aging (BLSA), Aging (Albany N.Y.), 2016, vol. 8, рр. 2971–2987.

  56. Sultana, T., Zamborlini, A., Crostofari, G., and Lesage, P., Integration site selection by retroviruses and transposable elements in eukaryotes, Nat. Rev. Genet., 2017, vol. 18, pp. 292–308.

    Article  CAS  Google Scholar 

  57. Tempel, S., Pollet, N., and Tahi, F., NcRNA classifier: a tool for detection and classification of transposable element sequences in RNA hairpins, BMC Bioinformatics, 2012, vol. 13, pp. 246–258.

    Article  CAS  Google Scholar 

  58. Terlecki-Zaniewicz, L., Lammermann, I., Latreille, J., et al., Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype, Aging (Albany N.Y.), 2018, vol. 10, рр. 1103–1132.

  59. Testa, U., Pelosi, E., Castelli, G., and Labbaye, C., miR-146 and miR-155: two key modulators of immune response and tumor development, Noncoding RNA, 2017, vol. 3, p. 22.

    Article  Google Scholar 

  60. Ukai, T., Sato, M., Akutsu, H., et al., MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism, J. Orthop. Res., 2012, vol. 30, pp. 1915–1922.

    Article  CAS  Google Scholar 

  61. Vazquez, B.N., Thackray, J.K., Simonet, N.G., et al., SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina, Nucleic Acids Res., 2019, vol. 47, pp. 7870–7885.

    Article  CAS  Google Scholar 

  62. Wang, J., Geesman, G.J., Hostikka, S.L., et al., Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal, Cell Cycle, 2011, vol. 10, pp. 3016–3030.

    Article  CAS  Google Scholar 

  63. Wang, J., Zhu, S., Meng, N., et al., NcRNA-encoded peptides or proteins and cancer, Mol. Ther., 2019, vol. 27, pp. 1718–1725.

    Article  CAS  Google Scholar 

  64. Wei, G., Qin, S., Li, W., et al., MDTE DB: a database for microRNAs derived from transposable element, IEEE/ACM Trans. Comput. Biol. Bioinform., 2016, vol. 13, pp. 1155–1160.

    Article  Google Scholar 

  65. Wong, N.W., Chen, Y., Chen, S., and Wang, X., OncomiR: an online resource for exploring pan-cancer microRNA dysregulation, Bioinformatics, 2018, vol. 34, pp. 713–715.

    Article  Google Scholar 

  66. Yamada, K., Kaneko, H., Shimizu, H., et al., Lamivudine inhibits Alu RNA-induced retinal pigment epithelium degeneration via anti-inflammatory and anti-senescence activities, Transl. Vis. Sci. Technol., 2020, vol. 9, p. 1. https://doi.org/10.1167/tvst.9.8.1

    Article  Google Scholar 

  67. Yuan, Z., Sun, X., Liu, H., and Xie, J., MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes, PLoS One, 2011, vol. 6. e17666.

  68. Yuan, S., Shi, Y., Guo, K., and Tang, S., Nucleoside reverse transcriptase inhibitors (NRTIs) induce pathological pain through Wnt5a-mediated neuroinflammation in aging mice, J. Neuroimmune Pharmacol., 2018, vol. 13, pp. 230–236.

    Article  Google Scholar 

  69. Zhang, H., Yang, H., Zhang, C., et al., Investigation of microRNA expression in human serum during the aging process, J. Geront. A Biol. Sci. Med. Sci., 2015, vol. 70, pp. 102–109.

    Article  Google Scholar 

  70. Zhang, T., Brinkley, T.E., Liu, K., et al., Circulating miRNAs as biomarkers of gait speed responses to aerobic exercise training in obese older adults, Aging (Albany N.Y.), 2017, vol. 9, рр. 900–913.

  71. Zhang, Z.K., Li, J., Guan, D., et al., A newly identified lncRNA MaR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration, J. Cachexia Sarcopenia Muscle, 2018, vol. 9, pp. 613–626.

    Article  Google Scholar 

  72. Zhang, J., Wei, F., Ding, L., et al., MicroRNA-1976 regulates degeneration of the sinoatrial node by targeting Cav1.2 and Cav1.3 ion channels, J. Mol. Cell. Cardiol., 2019, vol. 134, pp. 74–85.

    Article  CAS  Google Scholar 

  73. Zheng, D., Sabbagh, J.J., Blair, L.J., et al., MicroRNA-511 binds to FKBP5 mRNA, which encodes a chaperone protein, and regulates neuronal differentiation, J. Biol. Chem., 2016, vol. 291, pp. 17 897–17 906.

    Article  Google Scholar 

  74. Zuberi, M., Mir, R., Das, J., et al., Expression of serum miR-200a, miR-200b, and miR-200c as candidate biomarkers in epithelial ovarian cancer and their association with clinicopathological features, Clin. Transl. Oncol., 2015, vol. 17, pp. 779–787.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mustafin.

Ethics declarations

The authors declare that they have no conflicts of interest.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafin, R.N. Interrelation of MicroRNAs and Transposons in Aging and Carcinogenesis. Adv Gerontol 12, 264–277 (2022). https://doi.org/10.1134/S2079057022030092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057022030092

Keywords:

Navigation