Skip to main content
Log in

Molecular markers: Implementation in crop plant breeding for identification, introgression and gene pyramiding

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Over the past decades, wide theoretical and practical experience has been obtained in the application of DNA markers for the investigation of plant genetic diversity, the construction of molecular genetic maps, the mapping of genes and quantitative trait loci, and the employment of molecular marker technologies in the development of commercial cultivars and breeding of crop lines. To date, the main practical application of molecular markers is related to germplasm characterization, introgression and the pyramiding of genome fragments associated with agronomically important traits controlled by major genes. The contribution of new technologies to the selection of traits with multigenic inheritance is still insignificant. Despite considerable progress in plant molecular genetics and genomics methods and great interest in new technologies among breeders, there are a large number of constraints affecting the implementation of new technologies in breeding practice. This article considers the potential application of DNA markers in the breeding of crop plants and the benefits and limitations of the use of marker-assisted technologies in comparison with conventional plant breeding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, S.K., Datta, M., Sharma, M., and Kumar, A., Haploid production technology in wheat and some selected higher plants, Austr. J. Crop Sci., 2011, vol. 5, pp. 1087–1093.

    Google Scholar 

  • van den Berg, J.H., Chasalow, S.D., and Waugh, R., RFLP mapping of plant nuclear genomes: planning of experiments, linkage map construction, and QTL mapping, in Plant Molecular Biology-a Laboratory Manual, Berlin: Springer-Verlag, 1997, pp. 334–396.

    Chapter  Google Scholar 

  • Bespalova, L.A., Vasilyev, A.V., Ablova, I.B., et al., The use of molecular markers in wheat breeding at the Lukyanenko Agricultural Research Institute, Russ. J. Genet.: Appl. Res., 2012, vol. 2, no. 4, pp. 286–290.

    Article  Google Scholar 

  • Blaszczyk, L., Chelkowski, J., Korzun, V., et al., Verification of STS markers for leaf rust resistance genes of wheat by seven European laboratories, Cell Mol. Biol. Lett., 2004, vol. 9, pp. 805–817.

    PubMed  CAS  Google Scholar 

  • Blaszczyk, L., Kramer, I., Ordon, I., et al., Validity of selected DNA markers for breeding leaf rust resistant wheat, Cereal Res. Commun., 2008, vol. 36, pp. 201–213.

    Article  CAS  Google Scholar 

  • Brennan, J.P. and Martin, P.J., Returns to investment in new breeding technologies, Euphytica, 2007, vol. 157, pp. 337–349.

    Article  Google Scholar 

  • Cakir, M., Drake-Brockman, R., Ma, J., et al., Application and challenges of marker-assisted selection in the Western Australian Wheat Breeding Program, 2008. http://ses.library.usyd.au/bitstream/2123/3338/l/P279.pdf

    Google Scholar 

  • Canaran, P., Buckler, E.S., and Glaubitz, J.C., Panzea: an update on new content and features, Nucleic Acids Res., 2008, vol. 36(Database issue), pp. D1041–D1043.

    PubMed  CAS  Google Scholar 

  • Chelkowski, J. and Stepien, L., Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher, J. Appl. Genet., 2003, vol. 44, pp. 323–338.

    PubMed  Google Scholar 

  • Chhuneja, P., Kaur, S., and Garg, T., Mapping of adult plant stripe rust resistance genes in diploid a genome wheat species and their transfer to bread wheat, Theor. Appl. Genet., 2008, vol. 116, pp. 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Collard, B.C.Y. and Mackill, D.J., Marker assisted selection: an approach for precision plant breeding in the twenty-first century, Philos. Trans. R. Soc. B, 2008, vol. 363, pp. 557–572.

    Article  CAS  Google Scholar 

  • Delannay, X., McLaren, G., and Ribaut, J-M., Fostering molecular breeding in developing countries, Mol. Breed., 2012, vol. 29, pp. 857–873.

    Article  CAS  Google Scholar 

  • Eathington, S.R., Crosbie, T.M., Edwards, M.D., et al., Molecular markers in a commercial breeding program, Crop Sci., 2007, vol. 47, pp. 154–S163.

    Google Scholar 

  • Exner, V., Hirsch-Hoffmann, M., Gruissem, W., and Hennig, L., Plant DB-a versatile database for managing plant research, Plant Methods, 2008, vol. 4, p. 1.

    Article  PubMed  Google Scholar 

  • Falke, K.C., Susic, Z., Hackauf, B., et al., Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics, Theor. Appl. Genet., 2008, vol. 117, pp. 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Falke, K.C. and Frisch, M., Selection strategies for the development of rye introgression libraries, Theor. Appl. Genet., 2009, vol. 119, pp. 595–603.

    Article  PubMed  CAS  Google Scholar 

  • Falke, K.C. and Frisch, M., Power and false positive rate in QTL detection with near-isogenic line libraries, Heredity, 2011, vol. 106, pp. 576–584.

    Article  PubMed  CAS  Google Scholar 

  • Frisch, M., Bohn, M., and Melchinger, A.E., Comparison of selection strategies for marker assisted backcrossing of a gene, Crop Sci., 1999, vol. 39, pp. 1295–1301.

    Article  Google Scholar 

  • Frisch, M. and Melchinger, A.E., Selection theory for marker-assisted backcrossing, Genetics, 2005, vol. 170, pp. 909–917.

    Article  PubMed  CAS  Google Scholar 

  • Gainullin, N.R., Lapochkina, I.F., Zhemchuzhina, A.I., et al., Phytopathological and molecular genetic identification of brown rust resistance genes in common wheat accessions with alien genetic material, Russ. J. Genet., 2007, vol. 43, pp. 1058–1064.

    Article  CAS  Google Scholar 

  • Ganal, M.W. and Röder, M.S., Microsatellite and SNP markers in wheat breeding, in Genomics-Assisted Crop Improvement, Varshney, R.K. and Tuberosa, R., Eds., New York: Springer, 2007, pp. 1–24.

    Chapter  Google Scholar 

  • Gupta, P.K., Langridge, P., and Mir, R.R., Marker-assisted wheat breeding: present status and future possibilities, Mol. Breed., 2010, vol. 26, pp. 145–161.

    Article  Google Scholar 

  • Hayden, M.J., Kuchel, H., and Chalmers, K.J., Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 2004, vol. 109, pp. 1641–1647.

    Article  PubMed  CAS  Google Scholar 

  • Herzog, E. and Frisch, M., Selection strategies for markerassisted backcrossing with high-throughput marker systems, Theor. Appl. Genet., 2011, vol. 123, pp. 251–260.

    Article  PubMed  Google Scholar 

  • Hospital, F., Marker-assisted backcross breeding: a case-study in genotype building theory, in Quantitative Genetics, Genomics, and Plant Breeding, Kang, M.S., Ed., Wallingford, UK: CABI Publ., 2002, pp. 135–142.

    Google Scholar 

  • Huang, X.Q., Borner, A., Roder, M.S., and Ganal, M.W., Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers, Theor. Appl. Genet., 2002, vol. 105, pp. 699–707.

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina, E.A., Molecular methods for analyzing the structure-function organization of genes and genomes in higher plants, Russ. J. Genet.: Appl. Res., 2012, vol. 2, no. 3, pp. 243–251.

    Article  Google Scholar 

  • Kolmer, J.A., Singh, R.P., Garvin, D.F., et al., Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm, Crop Sci., 2008, vol. 48, pp. 1841–1852.

    Article  CAS  Google Scholar 

  • Kuchel, H., Fox, R., Hollamby, G., et al., The challenges of integrating new technologies into a wheat breeding programme, 2008. http://ses.library.usyd.edu.au/bitstream/2123/3400/1/O54.pdf

    Google Scholar 

  • Kuchel, H., Fox, R., Reinheimer, J., et al., The successful application of a marker-assisted wheat breeding strategy, Mol. Breed., 2007, vol. 20, pp. 295–308.

    Article  Google Scholar 

  • Landjeva, S., Korzun, V., and Borner, A., Molecular markers: actual and potential contributions to wheat genome characterization and breeding, Euphitica, 2007, vol. 156, pp. 271–296.

    Article  CAS  Google Scholar 

  • Li, Y., Zhou, R., Wang, J., et al., Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat, Mol. Breed., 2012, vol. 29, pp. 627–643.

    Article  Google Scholar 

  • Liu, S., Yu, L-Xi., Singh, R.P., et al., Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26, Theor. Appl. Genet., 2010, vol. 120, pp. 691–697.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., He, Z., Appels, R., and Xia, X., Functional markers in wheat: current status and future prospects, Theor. Appl. Genet., 2012, vol. 125, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Marone, D., Laido, G., Gadaleta, A., et al., A high-density consensus map of A and B wheat genomes, Theor. Appl. Genet., 2012, vol. 125, pp. 1619–1638.

    Article  PubMed  Google Scholar 

  • McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat, 2010. Supplement 2011, 2012. http://www.shigen.nig.ac.jp/wheat/komugi/genes/.

    Google Scholar 

  • Milc, J., Sala, A., Bergamaschi, S., and Pecchioni, N., A genotypic and phenotypic information source for marker-assisted selection of cereals: the CEREALAB database, Database, 2011. Article ID baq038, doi: 10.1093/database/baq038

    Google Scholar 

  • Mohler, V. and Schwarz, G., Genotyping tools in plant breeding: from restriction fragment length polymorphisms to single nucleotide polymorphisms, in Molecular Marker Systems in Plant Breeding and Crop Improvement, Lortz, H. and Wenzel, G., Eds., 2005, vol. 55, pp. 23–38.

    Article  CAS  Google Scholar 

  • Narain, P., Quantitative genetics: past and present, Mol. Breed., 2010, vol. 26, pp. 135–143.

    Article  Google Scholar 

  • Neu, C. and Stein, N., Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat, Genome, 2002, vol. 45, pp. 737–744.

    Article  PubMed  CAS  Google Scholar 

  • Nocente, F., Gazza, L., and Pasquini, M., Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection, Euphytica, 2007, vol. 155, pp. 329–336.

    Article  CAS  Google Scholar 

  • Pardey, P.G., A strategic look at global wheat production, productivity and R and D developments, Czech. J. Genet. Plant Breed., 2011, vol. 47, pp. S9–S19.

    Google Scholar 

  • Prigge, V., Melchinger, A.E., Dhillon, B.S., and Frisch, M., Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations, Theor. Appl. Genet., 2009, vol. 119, pp. 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Randhawa, H.S., Mutti, J.S., Kidwell, K., et al., Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection, PLoS One, 2009, vol. 4, p. e5752.

    Article  PubMed  Google Scholar 

  • Salameh, A., Buerstmayr, M., Steiner, B., et al., Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on Fusarium head blight resistance, yield and quality traits, Mol. Breed., 2011, vol. 28, pp. 485–194.

    Article  Google Scholar 

  • Salina, E., Dobrovolskaya, O., Efremova, T., et al., Micro-satellite monitoring of recombination around the Vrn-B1 locus of wheat during early backcross breeding, Plant Breed., 2003, vol. 122, pp. 116–119.

    Article  CAS  Google Scholar 

  • Salina, E.A., Leonova, I.N., and Roder, M.S., Wheat genome structure: translocations during the course of polyploidization, Func. Integr. Genomics, 2006, vol. 6, pp. 71–80.

    Article  CAS  Google Scholar 

  • Schmierer, D.A., Kandemir, N., Kudrna, D.A., et al., Molecular marker-assisted selection for enhanced yield in malting barley, Mol. Breed., 2004, vol. 14, pp. 463–173.

    Article  CAS  Google Scholar 

  • Serfling, A., Kramer, I., Lind, V., et al., Diagnostic value of molecular markers for Lr genes and characterization of leaf rust resistance of German winter wheat cultivars with regard to the stability of vertical resistance, Eur. J. Plant Pathol., 2011, vol. 130, pp. 559–575.

    Article  CAS  Google Scholar 

  • Singh, S., Sidhu, J.S., Huang, N., et al., Pyramiding three bacterial blight resistance genes (xa5, xa13 and xa21) using marker-assisted selection into indica rice cultivar PR106, Theor. Appl. Genet., 2001, vol. 102, pp. 1011–1015.

    Article  CAS  Google Scholar 

  • Sivasamy, M., Vinod, Tiwari, S., et al., Introgression of useful linked genes for resistance to stem rust, leaf rust and powdery mildew and their molecular validation in wheat (Triticum aestivum L.), Indian J. Genet., 2009, vol. 69, pp. 17–27.

    CAS  Google Scholar 

  • Somers, D.J., Molecular marker systems and their evaluation for cereal genetics, in Cereal Genomics, Gupta, P.K. and Varshney, R.K., Eds., Netherlands: Kluwer Acad. Publ., 2004, pp. 19–34.

    Google Scholar 

  • Sourdille, P., Singh, S., Cadalen, T., et al., Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.), Func. Integr. Genomics, 2004, vol. 4, pp. 12–25.

    Article  CAS  Google Scholar 

  • Spielmeyer, W., Sharp, P.J., and Lagudah, E.S., Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.), Crop Sci., 2003, vol. 43, pp. 333–336.

    Article  CAS  Google Scholar 

  • Tester, M. and Langridge, P., Breeding technologies to increase crop production in a changing world, Science, 2010, vol. 237, pp. 818–822.

    Article  Google Scholar 

  • Timonova, E.M., Leonova, I.N., Roder, M.S., and Salina, E.A., Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome, Mol. Breed., 2013, vol. 31, pp. 123–136.

    Article  Google Scholar 

  • Torada, A., Koike, M., Ikeguchi, S., and Tsutsui, I., Mapping of a major locus controlling seed dormancy using backcrossed progenies in wheat (Triticum aestivum L.), Genome, 2008, vol. 51, pp. 426–132.

    Article  PubMed  CAS  Google Scholar 

  • Tyryshkin, L.G., The presence of DNA markers as a criterion for postulating the presence of Lr genes of wheat Triticum aestivum L. resistance to leaf rust caused by Puccinia triticina Erikss: a critical view, S.-Kh. Biol., 2010, no. 3, pp. 76–81.

    Google Scholar 

  • Urbanovich, O.Yu., Malyshev, S.V., Dolmatovich, T.V., and Kartel’, N.A., Identification of leaf rust resistance genes in wheat (Triticum aestivum L.) cultivars using molecular markers, Russ. J. Genet., 2006, vol. 42, no. 5, pp. 546–554.

    Article  CAS  Google Scholar 

  • Varshney, R.K., Mahendar, T., Aggarwal, R.K., and Börner, A., Genetic molecular markers in plants: development and applications, in Genomics-Assisted Crop Improvement, Varshney, R.K. and Tuberosa, R., Eds., 2007, vol. 1, pp. 13–29.

    Article  Google Scholar 

  • Varshney, R.K., Graner, A., and Sorrells, M.E., Genomics-assisted breeding for crop improvement, Trends Plant Sci., 2005, vol. 10, pp. 621–630.

    Article  PubMed  CAS  Google Scholar 

  • Vida, G., Gal, M., Uhrin, A., et al., Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance, Euphytica, 2009, vol. 170, pp. 67–76.

    Article  CAS  Google Scholar 

  • William, H.M., Trethowan, R., and Crosby-Galvan, E.M., Wheat breeding assisted by markers: Cimmyt’s experience, Euphytica, 2007, vol. 157, pp. 307–319.

    Article  Google Scholar 

  • Xu, Y., Developing marker-assisted selection strategies for breeding hybrid rice, Plant Breed. Rev., 2003, vol. 23, pp. 73–174.

    CAS  Google Scholar 

  • Xu, Y. and Crouch, J.H., Marker-assisted selection in plant breeding: from publication to practice, Crop Sci., 2008, vol. 48, pp. 391–407.

    Article  Google Scholar 

  • Xu, Y., Molecular Plant Breeding, Wallington, UK: CAB-International, 2010.

    Book  Google Scholar 

  • Xu, Y., Tu, Y., Xie, C., et al., Whole-genome strategies for marker-assisted plant breeding, Mol. Breed., 2012, vol. 29, pp. 833–854.

    Article  Google Scholar 

  • Yang T., Wang, W., Yang, W., and Wang, M., Marker-assisted selection for pyramiding the waxy and opaque-16 genes in maize using cross and backcross schemes, Mol. Breed., 2013, vol. 31, pp. 767–775.

    Article  Google Scholar 

  • Zhang, W., Lukaszewski, A.J., Kolmer, J., et al., Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum, Theor. Appl. Genet., 2005, vol. 111, pp. 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, W., Canaran, P., Jurkuta, R., et al., Panzea: a data-base and resource for molecular and functional diversity in the maize genome, Nucleic Acids Res., 2006, vol. 34 (Database issue), pp. D752–D757.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Leonova.

Additional information

Original Russian Text © I.N. Leonova, 2013, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2013, Vol. 17, No. 2, pp. 314–325.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonova, I.N. Molecular markers: Implementation in crop plant breeding for identification, introgression and gene pyramiding. Russ J Genet Appl Res 3, 464–473 (2013). https://doi.org/10.1134/S2079059713060051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059713060051

Keywords

Navigation