Skip to main content
Log in

Prospects of the use of wild relatives for pea breeding

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The current global climate change results in shift and shrinkage of ranges of crop cultivation. The potential of crop wild relatives as an important source of genetic diversity for breeding is underestimated. Wild relatives of pea include the species P. fulvum and the subspecies P. sativum subsp. elatius, whereas wild representatives of P. abyssinicum are unknown. Wild peas are characterized by spontaneous dehiscence of pods and ballistic seed dispersal. The cultivated pea represents just a phyletic lineage within P. sativum. Pea crop wild relatives are promising with respect to: (1) resistance to pests and pathogens; (2) resistance to abiotic stress; (3) nutritional value; (4) agrotechnical advantages, e.g. branching, ability of hibernation etc.; (5) symbiotic nitrogen fixation; etc. P. fulvum is resistant to pea weevil, rust, powdery mildew and ascochyta blight. Some P. sativum subsp. elatius are resistant to nematodes, broomrape, powdery mildew, Fusarium wilt, root rot, ascochyta blight and white wilt. P. sativum subsp. elatius responds to weevil oviposition by neoplastic pustules of the pod wall controlled by the locus Np. Some P. sativum subsp. elatius accessions have lowered transpiration rates, and an accession from Italy survives at–20°C. Analyses of quantitative trait loci have been carried out for resistance of P. fulvum to pea weevil, powdery mildew and rust and for resistance of P. sativum subsp. elatius to broomrape, bacterial blight and ascochyta blight. Aryamanesh et al. (2012) obtained five introgression lines with pea weevil resistance transferred from P. fulvum to P. sativum. The practical use of wild peas is hampered by insufficient awareness of their diversity and differences from cultivated peas. Studies of useful traits of wild peas and their natural diversity, which is rapidly vanishing, should be intensified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbo, S., Lev-Yadun, S., and Gopher, A., Plant domestication and crop evolution in the Near East: On events and process, Crit. Rev. Plant. Sci., 2012, vol. 31, p. 241–257.

    Article  Google Scholar 

  • Abbo, S., Lev-Yadun, S., Heun, M., and Gopher, A., On the “lost crops” of the neolithic Near East, J. Exp. Bot., 2013, vol. 64, 815–822.

    Article  CAS  Google Scholar 

  • Abbo, S., Lev-Yadun, S., and Gopher, A., Agricultural origins: Centres and noncentres; a Near Eastern reappraisal, Crit. Rev. Plant. Sci., 2010, vol. 29, pp. 317–328.

    Article  Google Scholar 

  • Abbo, S., Lev-Yadun, S., and Gopher, A., Origin of Near Eastern plant domestication: Homage to Claude LeviStrauss and “La Penseaé Sauvage”, Genet. Res. Crop. Evol., 2011, vol. 58, pp. 175–179.

    Article  Google Scholar 

  • Ali, S.M., Sharma, B., and Ambrose, M.J., Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses, Euphytica, 1994, vol. 73, pp. 115–126.

    Article  Google Scholar 

  • Allaby, R.G., Fuller, D.Q., and Brown, T.A., The genetic expectation of the protracted model of the origin of domesticated crops, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 13982–13986.

    Article  CAS  Google Scholar 

  • Aryamanesh, N., Zeng, Y., Byrne, O., Hardie, D.C., AlSubhi, A.M., Khan, T., Siddique, K.H.M., and Yan, G., Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping, Theor. Appl. Genet., 2014, vol. 127, pp. 489–497.

    Article  Google Scholar 

  • Aryamanesh, N., Byrne, O., Hardie, D.C., Khan, T., Siddique, K.H.M., and Yan, G., Large-scale densitybased screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum, Crop Pasture Sci., 2012, vol. 63, 612–618.

    Article  Google Scholar 

  • Asouti, E. and Fuller, D.Q., From foraging to farming in the southern Levant: The development of the Epipaleolithic and Pre-pottery Neolithic plant managing strategies, Veg. History Archaeobot., 2012, vol. 21, pp. 149–162.

    Article  Google Scholar 

  • Baranger, A.G., Aubert, G., Arnau, G., Lainé, A.L., Deniot, G., Potier J., Weinachter, C., Lejeune-Hénaut, I., Lallemand, J., and Burstin, J., Genetic diversity within Pisum sativum using protein and PCR based markers, Theor. Appl. Genet., 2004, no. 108, pp. 1309–1321.

    Article  CAS  Google Scholar 

  • Barilli, E., Sillero, J.C., Moral, A., and Rubiales, D., Characterization of resistance response of pea (Pisum spp.) against rust (Uromyces pisi), Plant Breed., 2009, vol. 128, pp. 665–670.

    Article  Google Scholar 

  • Barilli, E., Satovic, Z., Rubiales, D., and Torres, A.M., Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross, Euphytica, 2010, vol. 175, pp. 151–159.

    CAS  Google Scholar 

  • Bastianelli, D., Grosjean, F., Peyronnet, C., Duparque, M., and Regnier, J.M., Feeding value of pea (Pisum sativum L.), Chemical composition of different categories of pea, Anim. Sci., 1998, vol. 67, pp. 609–619.

    Google Scholar 

  • Ben-Ze’ev, N. and Zohary, D., Species relationship in the genus Pisum L., Israel J. Bot., 1973, vol. 22, pp. 73–91.

    Google Scholar 

  • Berdnikov, V.A., Trusov, Y.A., Bogdanova, V.S., Kosterin, O.E., Rozov, S.M., Nedel’kina, S.V., and Nikulina, Y.N., The neoplastic pod gene (Np) may be a factor of resistance to the pest Bruchus pisorum L., Pisum Genet., 1992, vol. 24, pp. 37–39.

    Google Scholar 

  • Bogdanova, V.S. and Galieva, E.R., Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies, Russ. J. Genet., vol. 45, pp. 623–627.

  • Bogdanova, V.S., Galieva, E.R., Yadrikhinskiy, A.K., and Kosterin, O.E., Inheritance and genetic mapping of two nuclear genes involved in nuclear-cytoplasmic incompatibility in peas (Pisum sativum L.), Theor. Appl. Genet., 2012, vol. 124, pp. 1503–1512.

    Article  CAS  Google Scholar 

  • Bogdanova, V.S., Kosterin, O.E., and Yadrikhinskiy, A.K., Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus, Theor. Appl. Genet., 2014, no. 127, pp. 1163–1172.

    CAS  PubMed  Google Scholar 

  • Borisov, A.Yu., Shtark, O.Yu., Zhukov, V.A., Nemankin, T.A., Naumkina, T.S., Pinaev, A.G., Akhtemova, G.A., Voroshilova, V.A., Ovchinnikova, E.S., Rychagova, T.S., Tsyganov, V.E., Zhernakov, A.I., Kuznetsova, E.V., and Grishina, O.A., Interaction of legumes with beneficial soil microorganisms: From genes to varieties, Agric. Biol., 2011, no. 3, pp. 41–47.

    Google Scholar 

  • Brown, T.A., Jones, M.K., Powell, W., and Allaby, R.G., The complex origins of domesticated crops in the Fertile Crescent, Trends Ecol. Evol., 2009, no. 24, pp. 103–109.

    Article  PubMed  Google Scholar 

  • Byrne, O.M., Hardie, D.C., Khan, T.N., and Yan, G., Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross., Aust. J. Agric. Res., 2008, no. 59, pp. 854–862.

    Article  CAS  Google Scholar 

  • Carrillo, E. and Rubiales, D., Pérez-de-Luque, A., and Fondevilla, S., Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp., Eur. J. Plant Pathol., 2013, vol. 135, no. 761–769.

    Article  CAS  Google Scholar 

  • Carrillo, E., Satovic, Z., Aubert, G., Boucherot, K., Rubiales, D., and Fondevilla, S., Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea, Plant Cell Rep., 2014, no. 33, pp. 1133–1345.

    Article  CAS  PubMed  Google Scholar 

  • Clement, S.L., Hardie, D.C., and Elberson, L.R., Variation among accessions of Pisum fulvum for resistance to pea weevil, Crop Sci., 2002, vol. 42, pp. 2167–2173.

    Article  Google Scholar 

  • Clement, S.L., McPhee, K.E., Elberson, L.R., and Evans, M.A., Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses, Plant Breed., 2009, no. 128, pp. 478–485.

    Article  Google Scholar 

  • Conicella, C. and Errico, A., Karyotpe variations in Pisum sativum ect. abyssinicum, Caryologia, 1990, vol. 43, pp. 87–97.

    Article  Google Scholar 

  • Cooper, L.D., Doss, R.P., Price, R., Peterson, K., and Oliver, J.E., Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin, J. Exp. Bot., 2005, vol. 56, pp. 1229–1237.

    Article  CAS  PubMed  Google Scholar 

  • Coyne, C.J., McClendon, M.T., Walling, J.G., Timmerman-Vaughan, G.M., Murray, S., Meksem, K., Lightfoot, D.A., Shultz, J.L., Keller, K.E., Martin, R.R., Inglis, D.A., Rajesh, P.N., McPhee, K.E., Weeden, and N.F., Grusak, Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes, Genome, 2007, vol. 50, pp. 871–875.

    Article  CAS  PubMed  Google Scholar 

  • Coyne, C.J., McGee, R.J., Redden, R.J., Ambrose, M.J., Furman, B.J., and Miles, C.A., Genetic adjustment to changing climates: Pea, in Crop Adaptation to Climate Change, Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., and Hall, A.E., Eds., Oxford: Wiley-Blackwell, 2011, pp. 238–250.

  • Davis, H., Materials for a flora of Turkey. XIX. Leguminosae: Vicieae, Notes Roy. Bot. Garden Edinburgh, 1969, vol. 29, pp. 311–320.

    Google Scholar 

  • Davis, H., Flora of Turkey and the East Aegean Islands, Edinbourgh, 1970, vol. 3.

    Google Scholar 

  • Domoney, C., Casey, R., Turner, L., and Ellis, N., Pisum lipoxygenase genes, Theor. Appl. Genet., 1991, vol. 81, pp. 800–805.

    Article  CAS  PubMed  Google Scholar 

  • Doss, R.P., Oliver, J.E., Proebsting, W.M., Potter, S.W., Kuy, S., Clement, S.L., Williamson, T., Carney, J.R., and DeVilbiss, E.D., Bruchins: Insect-derived plant regulators that stimulate neoplasm formation, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 6218–6233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doss, R.P., Oliver, J.E., Proebsting, W.M., Potter, S.W., Kuy, S., Clement, S.L., Williamson, T., Carney, J.R., and DeVilbiss, E.D., Bruchins: Insect-derived plant regulators that stimulate neoplasm formation, Proc. Natl Acad. Sci. U.S.A., 2000, vol. 97, pp. 6218–6223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, T.H.N., Poyser, S.J., Knox, M.R., Vershinin, A.V., and Ambrose, M.J., Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea, Mol. General Genet., 1998, vol. 260, pp. 9–19.

    CAS  Google Scholar 

  • Errico, A., Conicella, C., and Venora, G., Karyotype studies on Pisum fulvum and Pisum sativum using a chromosome image analysis system, Genome, 1991, vol. 34, pp. 105–108.

    Article  Google Scholar 

  • Fondevilla, S., Martín-Sanz, A., Satovic, Z., FernándezRomero, M.D., Rubiales, D., and Caminero, C., Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv syringae in pea (Pisum sativum L.), Euphytica, 2012, vol. 186, p. 805–812.

    Article  Google Scholar 

  • Fondevilla, S., Cubero, J.I., and Rubiales, D., Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes, Plant Breed., 2010, vol. 130, pp. 281–282.

    Google Scholar 

  • Fondevilla, S., Satovic, Z., Rubiales, D., Moreno, M.T., and Torres, A.M., Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp syriacum, Mol. Breed., 2008, vol. 21, pp. 439–454.

    Article  CAS  Google Scholar 

  • Fondevilla, S., Torres, A.M., Moreno, M.T., and Rubiales, D., Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea, Breed. Sci., 2007b, vol. 57, pp. 181–184.

    Article  Google Scholar 

  • Fondevilla, S., Cubero, J.I., and Rubiales, D., Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum, in Ascochyta blights of grain legumes, Tivoli, B., Baranger, A., Muehlbauer, F.J., and Cooke, B.M., Eds., Springer, 2007a, pp. 53–58.

    Chapter  Google Scholar 

  • Fondevilla, S., Almeida, N.F., Satovic, Z., Rubiales, D., Patto, M.C.V., Cubero, J.I., and Torres, A.M., Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds, Euphytica, 2011, vol. 182, pp. 43–52.

    Google Scholar 

  • Fondevilla, S., Ávila C.M., Cubero J.I., and Rubiales, D., Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp., Plant Breed., 2005, vol. 124, pp. 313–315.

    Article  Google Scholar 

  • Ford-Lloyd, B.V., Schmidt, M., Armstrong, S.J., Barazani, O., Engels, J., Hadas, R., Hammer, K., Kell, S.P., Kang, D., Khoshbakht, K., Li, Y., Long, C., Lu, B.-R., Ma, K., and Nguyen, V.T., Crop wild relatives–undervalued, underutilized and under threat? BioScience, 2011, vol. 61, pp. 559–565.

    Google Scholar 

  • Fuller, D.Q., Contrasting pattern of crop domestication and domestication rates: Recent archaeological insights from the Old World, Ann. Bot., 2007, vol. 100, pp. 903–924.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller, D.Q., Willcox, G., and Allaby, R.G., Cultivation and domestication had multiple origins: Arguments against the core area hypothesis for the origins of agriculture in the Near East, World Archaeol., 2011, vol. 43, pp. 628–658.

    Article  Google Scholar 

  • Fuller, D.Q., Willcox, G., and Allaby, R.G., Early agricultural pathways: Moving outside the ‘core area’ hypothesis in Southwest Asia, J. Exp. Bot., 2012, vol. 63, pp. 617–633.

    Article  CAS  PubMed  Google Scholar 

  • Geurts, R., Heidstra, R., Hadri, A.E., Downie, J.A., Franssen, H., van Kammen, A.B., and Bisseling, T., Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis, Plant Physiol., 1997, vol. 115, pp. 351–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glémin, S. and Battailon, T., A comparative view of the evolution of grasses under domestication, New Phytol., 2012, vol. 183, pp. 273–290.

    Article  CAS  Google Scholar 

  • Goncharov, N.P., Nikolay Ivanovich Vavilov, Novosibirsk: SO RAN, 2014.

    Google Scholar 

  • Goncharov, N.P., Glushkov, S.A., and Shumny, V.K., Domestication of cereal crops in the Old World: In search of a new approach to solving old problem, Zh. Obshch. Biol., 2007, vol. 68, no. 2, pp. 126–148.

    CAS  PubMed  Google Scholar 

  • Gopher, A., Abbo, S., and Lev-Yadun, S., The “when”, the ‘where’ and the ‘why’ of the Neolithic revolution in the Levant, Documenta Praehistorica, 2001, vol. 27, pp. 49–62.

    Google Scholar 

  • Govorov, L.I., Cultivated Flora of the USSR, Moscow–Leningrad: Gos. Izd. Sovkhoz. Kolkhoz. Lit., 1937, vol. 4, pp. 229–336.

    Google Scholar 

  • Govorov, L.I., Pea of Afghanistan (on the problem of the origin of the cultivated pea), Bull. Appl. Bot., Genet. Plant Breed., 1928, vol. 19, pp. 497–522.

    Google Scholar 

  • Hammer, K., The domestication syndrome, Kulturpflanze, 1984, vol. 32, pp. 11–34.

    Article  Google Scholar 

  • Hance, S.T., Grey, W., and Weeden, N.F., Identification of tolerance to Fusarium solani in Pisum sativum ssp. elatius, Pisum Genetics, 2004, vol. 36, pp. 9–13.

    Google Scholar 

  • Harlan, J.R., Agricultural origin: Centres and noncentres, Science, 1971, vol. 174, pp. 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Hatfield, J.L., Changing climate in North America: Implications for crops, in Crop Adaptation to Climate Change, Yadav, S.S., Redden, R.J., Hatfield, J.L., LotzeCampen, H., and Hall, A.E., Eds., Oxford: WileyBlackwell, 2011, pp. 57–65.

    Chapter  Google Scholar 

  • Heng, L., Vincken, J.P., van Koningsveld, G., Legger, A., Gruppen, H., van Boekel, T., Roozen, J., and Voragen, F., Bitterness of saponins and their content in dry peas, J. Sci. Food Agric., 2006, vol. 86, pp. 1225–1231.

    Article  CAS  Google Scholar 

  • Hoey, B.K., Crowe, K.R., Jones, V.M., and Polans, N.O., A phylogenetic analysis of Pisum based on morphological characters, and allozyme and RAPD markers, Theor. Appl. Genet., 1996, vol. 92, pp. 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Jing, R., Johnson, R., Seres, A., Kiss, G., Ambrose, M.J., Knox, M.R., Ellis, T.H.N., and Flavell, A.J., Genebased sequence diversity analysis of field pea (Pisum), Genetics, 2007, vol. 177, pp. 2263–2275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing, R., Vershinin, A., Grzebota, J., Shaw, P., Smýkal, P., Marshall, D., Ambrose, M.J., Ellis, T.H.N., and Flavell, A.J., The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis, BMC Evol. Biol., 2010, vol. 10, art. 44.

    Google Scholar 

  • Kneen, B.E. and LaRue, T.A., Peas (Pisum sativum L.) with strain specificity to Rhizobium leguminosarum, Heredity, 1984, no. 52, pp. 383–389.

    Article  Google Scholar 

  • Kosterin, O.E. and Bogdanova, V.S., Reciprocal compatibility within the genus Pisum L. as studied in F1 hybrids: 1. Crosses involving P. sativum L. subsp. sativum, Genet. Res. Crop Evol., 2014. doi 10.1007/s10722014-0189z

    Google Scholar 

  • Kosterin, O.E., Zaytseva, O.O., Bogdanova, V.S., and Ambrose, M., New data on three molecular markers from different cellular genomes in Mediterranean accessions reveal new insights into phylogeography of Pisum sativum L. subsp. elatuis (Beib.) Schmahl, Genet. Res. Crop Evol., 2010, vol. 57, pp. 733–739.

    Article  CAS  Google Scholar 

  • Kosterin, O.E. and Bogdanova, V.S., Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes, Genet. Res. Crop Evol., 2008, vol. 55, pp. 735–755.

    Article  CAS  Google Scholar 

  • Ladizinsky, G., Seed dispersal in relation to domestication of Middle East legumes, Econ. Bot., 1979, vol. 33, pp. 284–289.

    Article  Google Scholar 

  • Lamm, R., Cytogenetical studies on translocations in Pisum, Hereditas, 1951, vol. 37, pp. 356–372.

    Article  Google Scholar 

  • Lev-Yadun, S., Gopher, A., and Abbo, S., The cradle of agriculture, Science, 2000, vol. 288, pp. 1602–1603.

    Article  CAS  PubMed  Google Scholar 

  • Lie, T.A., Symbiotic nitrogen fixation under stress conditions, Plant Soil, 1971, spec. vol., pp. 117–127.

    Google Scholar 

  • Lie, T.A., Symbiotic specialization in pea plants: The requirement of specific Rhizobium strains for peas from Afghanistan, Ann. Appl. Biol., 1978, vol. 88, pp. 462–465.

    Article  Google Scholar 

  • Lie, T.A., Göktan, D., Engin, M., Pijnenborg, J., and Anlarsal, E., Co-evolution of the legume-Rhizobium association, Plant Soil, 1987, vol. 100, pp. 171–181.

    Article  Google Scholar 

  • Lie, T.A., Host genes in Pisum sativum conferring resistance to European Rhizobium leguminosarum strains, Plant Soil, 1984, vol. 82, pp. 415–425.

    Article  Google Scholar 

  • Lie, T.A., Gene centres, a source for genetic variants in symbiotic nitrogen fixation: Host induced ineffectivity in Pisum sativum ecotype fulvum, Plant Soil, 1981, vol. 61, pp. 125–134.

    Google Scholar 

  • Lobell, D.B. and Field, C.B., Global scale climate–crop yield relationships and the impacts of recent warming, Environ. Res. Lett., 2007, vol. 2, art. 014002.

    Article  Google Scholar 

  • Lu, J., Knox, M.R., Ambrose, M.J., Brown, J.K.M., and Ellis, T.H.N., Comparative analysis of genetic diversity in pea assessed by RFLPand PCR-based methods, Theor. Appl. Genet., 1996, vol. 93, pp. 1103–1111.

    Article  CAS  PubMed  Google Scholar 

  • Makasheva, R.Kh., Pea, Cultivated Flora of the USSR, 1979, Leningrad: Kolos, vol. 4, part 1.

    Google Scholar 

  • Marx, G.A., New linkage relations for chromosome III of Pisum, Pisum Newsl., 1971, vol. 3, pp. 18–19.

    Google Scholar 

  • Maxted, N., Kell, S., Ford-Lloyd, B., Dulloo, E., and Toledo, B., Toward the systematic conservation of global crop wild relative diversity, Crop Sci., 2012, vol. 52, pp. 774–785.

    Article  Google Scholar 

  • Maxted, N. and Ambrose, M., Peas (Pisum L.), in Plant Genetic Res. of Legumes in the Mediterranean. Current Plant Science and Biotechnology in Agriculture, Maxted, N. and Bennett, S.J., Eds., 2001, Dordrecht: Kluwer Acad. Publ., pp. 181–190.

    Google Scholar 

  • Maxted, N. and Kell, S.P., Establishment of a Global Network for the in situ Conservation of Crop Wild Relatives: Status and Needs, Rome: FAO Commission on Genetic Resources for Food and Agriculture, 2009.

    Google Scholar 

  • McPhee, K.E., Tullu, A., Kraft, J.M., and Muehlbauer, F.J., Resistance to Fusarium wilt race 2 in the Pisum core collection, J. Am. Soc. Hortic. Sci., 1999, vol. 124, pp. 28–31.

    Google Scholar 

  • Murfet, I.C. and Reid, J.B., Developmental mutants, in Peas: Genetics, Molecular Biology and Biotechnology, Casey, R. and Davies, D.R., Eds., Wallingford: CAB International, 1993, pp. 165–216.

    Google Scholar 

  • Nikulina, Y.N., The neoplastic pod gene (Np) may be a factor of resistance to the pest Bruchus pisorum L., Pisum Genet., 1992, vol. 24, pp. 37–39.

    Google Scholar 

  • North, H., Casey, R., and Domoney, C., Inheritance and mapping of seed lypoxigenase peptides in Pisum, Theor. Appl. Genet., 1989, vol. 77, pp. 805–808.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, J.E., Doss, R.P., Marquez, B., and DeVilbiss, E.D., Bruchins, plant mitogens from weevils: Structural requirements for activity, J. Chem. Ecol., 2002, vol. 28, pp. 2503–2513.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, J.E., Doss, R.P., Williamson, R.T., Carney, J.R., and DeVilbiss, E.D., Bruchins–mitogenic 3-(hydroxypropanoyl) esters of long chain diols from weevils of the Bruchidae, Tetrahedron, 2000, vol. 56, pp. 7633–7641.

    Article  CAS  Google Scholar 

  • Porter, L.D., Hoheisel, G., and Coffman, V.A., Resistance of peas to Sclerotinia sclerotiorum in the Pisum core collection, Plant Pathol., 2009, vol. 58, pp. 52–60.

    Article  Google Scholar 

  • Provvidenti, R. and Hampton, R.O., Inheritance of resistance to white lupin mosaic virus in common pea, HortScience, 1993, vol. 28, pp. 836–837.

    Google Scholar 

  • Provvidenti, R. and Alconero, R., Inheritance of resistance to a lentil strain of pea seed-borne mosaic virus in Pisum sativum, J. Hered., 1988, vol. 79, pp. 45–47.

    Google Scholar 

  • Ramirez-Villegas, J., Jarvis, A., and Läderach, P., Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum, Agric. For. Meteorol., 2013, vol. 170, pp. 67–78.

    Article  Google Scholar 

  • Redden, R.J., Yadav, S.S., Hatfield, J.L., Prasanna, B.M., Vasal, S.K., and Lafarge, T., The potential of climate change adjustment in crops: A synthesis. Changing climate in North America: Implications for crops, in Crop Adaptation to Climate Change, Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., and Hall, A.E., Eds., Oxford: Wiley-Blackwell, 2011, pp. 492–514.

    Google Scholar 

  • Schultz, J.C., Schonrogge, K., and Lichtenstein, C.P., Plant response to bruchins, Trends Plant Sci., 2001, vol. 6, p. 406.

    Article  CAS  PubMed  Google Scholar 

  • Shlykov, G.R., Introduction of Plants, Moscow–Leningrad: Selkhozgiz, 1936.

    Google Scholar 

  • Shlykov, G.R., Introduction of Plants and Genetics, Moscow: VASKhNiL, 1937, pp. 218–230.

    Google Scholar 

  • Smýkal, P., Kenicer, G., Flavell, A.J., Corander, J., Kosterin, O., Redden, R.J., Ford, R., Coyne, C.J., Maxted, N., Ambrose, M.J., and Ellis, N.T.H., Phylogeny, phylogeography and genetic diversity of the Pisum genus, Plant Genet. Resour., Charact. Util., 2010, vol. 2010, pp. 1–15.

    Google Scholar 

  • Smýkal, P., Aubert, G., Burstin, J., Coyne, C.J., Ellis, N.T., Flavell, A.J., Ford, R., Hýbl, M., Macas, I., Neumann, P., McPhee, K.E., Redden, R.J., Rubiales, D., Weller, J.L., and Warkentin, T.D., Pea (Pisum sativum L.) in the genomic era, Agronomy, 2012, vol. 2, pp. 74–115.

    Article  Google Scholar 

  • Takhtajan, A., he Floristic Regions of the World, Leningrad: Nauka, 1978.

    Google Scholar 

  • Tanno, K. and Wilcox, G., How fast was wild wheat domesticated?, Science, 2006, vol. 311, p. 1886.

    Article  CAS  PubMed  Google Scholar 

  • Townsend, C., Contribution to the flora of Iraq. V. Notes on Leguminosales, Kew Bull. Roy. Bot. Gard., 1968, vol. 2, pp. 435–458.

    Google Scholar 

  • Valderrama, M.R., Roman, B., Satovic, Z., Rubiales, D., Cubero, J.I., and Torres, A.M., Locating quantitative trait loci associated with Orobanche crenata resistance in pea, Weed Res., 2004, vol. 44, pp. 323–328.

    Article  CAS  Google Scholar 

  • Vavilov, N.I., Centres of origin of cultivated plants, Bull. Appl. Bot., Genet. Plant Breed., 1926, vol. 16, no. 2.

    Google Scholar 

  • Vavilov, N.I., World centres of cultivar treasures (genes) of cultivated plants, Izv. GIOA, 1927, vol. 5, no. 5, pp. 339–351.

    Google Scholar 

  • Vavilov, N.I., Problem of the origin of cultivated plants in modern comprehention, in Advances and Perspectives in the Field of Applied Botany, Genetics and Breeding, Leningrad: VIPGiNK and GIOA, 1929, pp. 11–22.

    Google Scholar 

  • Vershinin, A.V., Allnutt, T.R., Knox, M.R., and Ambrose, M.J., Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication, Mol. Biol. Evol., 2003, vol. 20, pp. 2067–2075.

    CAS  PubMed  Google Scholar 

  • Vilkova, N.A., Kolesnichenko, L.I., and Shapiro, I.D., Methodic Recommendation on Revealing of Resistance of Pea Cultivars to Pea Weevil, Leningrad: Vses. Institut Rastenievod. VASKhNiL, 1977.

    Google Scholar 

  • Vito, M.D. and Perrino, P., Reaction of Pisum spp. to the attacks of Heterodera goettingiana, Nematologia Mediterranea, 1978, vol. 6, pp. 113–118.

    Google Scholar 

  • Waines, J.G., The biosystematics and domestication of peas (Pisum L.), Bul. Torrey Bot. Club, 1975, vol. 102, pp. 385–395.

    Article  Google Scholar 

  • Weeden, N.F., Brauner, S.O.R.E.N., and Przyborowski, J.A., Genetic analysis of pod dehiscence in pea (Pisum sativum L.), Cell. Mol. Biol. Lett., 2002, vol.7, no. 2b, pp. 657–664.

    CAS  PubMed  Google Scholar 

  • Weeden, N.F., Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the 'domestication syndrome' for legumes?, Ann. Bot., 2007, vol. 100, pp. 1017–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss, E., Kislev, M.E., and Hartmann, A., Autonomous cultivation before domestication, Science, vol. 312, pp. 1608–1610.

  • Wroth, J.M., Possible role of wild genotypes of Pisum spp. to enchance ascochyta blight resistance in pea, Aust. J. Exp. Agric., 1998, vol. 38, pp. 469–479.

    Article  Google Scholar 

  • Yang, J.P.W. and Mattews, P., A distinct class of peas (Pisum sativum L.) showing strain specificity for symbiotic Rhizobium leguminosarum, Heredity, 1982, vol. 48, pp. 203–210.

    Article  Google Scholar 

  • Yang, J.P.W., Johnson, W.B., and Brewin, N.J., A search for peas (Pisum sativum L.) showing strain specificity for symbiotic Rhizobium leguminosarum, Heredity, 1982, vol. 48, pp. 197–201.

    Article  Google Scholar 

  • Zaytseva, O.O., Bogdanova, V.S., and Kosterin, O.E., Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene, Gene, 2012, vol. 504, pp. 192–202.

    Article  CAS  PubMed  Google Scholar 

  • Zaytseva, O.O., Gunbin, K.V., Mglinets, A.V., and Kosterin, O.E., Divergence and population traits in evolution of the genus Pisum L. as reconstructed using genes of two histone H1 subtypes showing different phylogenetic resolution, Gene, 2015, vol. 556, pp. 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Zhukovsky, P.M., Kulturnye rasteniya i ikh sorodichi (Cultivated Plants and Their Relatives), Leningrad: Kolos, 1971, 3rd ed.

    Google Scholar 

  • Zohary, M., Geobotanical Foundations of the Middle East, Stuttgart: Gustav Fischer Verlag, 1973, vols. 1–2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Kosterin.

Additional information

Published in Russian in Vavilovskii Zhurnal Genetiki i Selektsii, 2015, Vol. 19, No. 2, pp. 154–164.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosterin, O.E. Prospects of the use of wild relatives for pea breeding. Russ J Genet Appl Res 6, 233–243 (2016). https://doi.org/10.1134/S2079059716030047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059716030047

Keywords

Navigation